CPU SCHEDULING

PRESENTED BY

SHILPA KHURANA A.P CSE DEPT.

CPU SCHEDULING

Multiprogramming A number of programs can be in memory at the same

time. Allows overlap of CPU and I/O.

Jobs (batch) are programs that run without user interaction.

User (time shared) are programs that may have user

interaction.

Process is the common name for both.

CPU- I/O burst cycle Characterizes process execution, which alternates,

between CPU and I/O activity. CPU times are generally

much shorter than I/O times.

Preemptive Scheduling An interrupt causes currently running process to

give up the CPU and be replaced by another process.

Basic Concepts

- Maximum CPU utilization obtained with multiprogramming
- CPU-I/O Burst Cycle Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst distribution

Alternating Sequence of CPU And I/O Bursts

•

load store add store read from file

wait for I/O

store increment index write to file

wait for I/O

load store add store read from file

wait for I/O

CPU burst

I/O burst

CPU burst

I/O burst

CPU burst

I/O burst

CPU Scheduler

- Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is non-preemptive
- All other scheduling is preemptive

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- <u>Dispatch latency</u> time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- <u>CPU utilization</u> keep the CPU as busy as possible
- <u>Throughput</u> # of processes that complete their execution per time unit
- <u>Turnaround time</u> amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
P_1	24
P_2	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3

The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6+0+3)/3=3
- Much better than previous case
- Short process behind long process

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time
- Two schemes:
 - nonpreemptive once CPU given to the process it cannot be preempted until completes its CPU burst
 - <u>preemptive</u> if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF)
- SJF is optimal gives minimum average waiting time for a given set of processes

Example of Non-Preemptive SJF

<u>Process</u>	<u>Arrival Time</u>	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

• SJF (non-preemptive)

• Average waiting time = (0 + 6 + 3 + 7)/4 = 4

Example of Preemptive SJF

ProcessArrival Time

Burst Time

 P_1 0.0 7 P_2 2.0 4 P_3 4.0 1 P_4 5.0 4

• SJF (preemptive)

• Average waiting time = (9 + 1 + 0 + 2)/4 = 3

Priority Scheduling

- A <u>priority</u> number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 - Preemptive
 - Non-preemptive
- SJF is a priority scheduling where priority is the predicted next CPU burst time
- Problem

 Starvation low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Performance
 - -q large \Rightarrow FIFO
 - -q small $\Rightarrow q$ must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 20

<u>Process</u>	Burst Time
P_1	53
P_2	17
P_3	68
P_4	24

The Gantt chart is:

 Typically, higher average turnaround than SJF, but better response

Time Quantum and Context Switch Time

Turnaround Time Varies With The Time Quantum

process	time
P_1	6
P_2	3
P_3	1
P_4	7

Multilevel Queue

- Ready queue is partitioned into separate queues: foreground (interactive) background (batch)
- Each queue has its own scheduling algorithm
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

highest priority

lowest priority

Multilevel Feedback Queue

- A process can move between the various queues;
 aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- $-Q_0$ RR with time quantum 8 milliseconds
- $-Q_1$ RR time quantum 16 milliseconds
- $-Q_2$ FCFS

Scheduling

- A new job enters queue Q_0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q_1 .
- At Q_1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q_2 .

Multilevel Feedback Queues

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Load sharing
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing

Real-Time Scheduling

- Hard real-time systems required to complete a critical task within a guaranteed amount of time
- Soft real-time computing requires that critical processes receive priority over less fortunate ones

Thread Scheduling

 Local Scheduling – How the threads library decides which thread to put onto an available LWP

 Global Scheduling – How the kernel decides which kernel thread to run next