
Deadlock Prevention, Avoidance,
and Detection

PRESENTED BY

 SHILPA KHURANA

A.P CSE DEPT.

The Deadlock problem
 In a computer system deadlocks arise when

members of a group of processes which
hold resources are blocked indefinitely
from access to resources held by other
processes within the group.

Deadlock example
 Pi requests one I/O controller and the

system allocates one.
 Pj requests one I/O controller and again the

system allocates one.
 Pi wants another I/O controller but has to

wait since the system ran out of I/O
controllers.

 Pj wants another I/O controller and waits.

Conditions for deadlocks
 Mutual exclusion. No resource can be shared by

more than one process at a time.
 Hold and wait. There must exist a process that is

holding at least one resource and is waiting to
acquire additional resources that are currently
being held by other processes.

 No preemption. A resource cannot be preempted.
 Circular wait. There is a cycle in the wait-for

graph.

An example

City A City B
bridge

City A City B

river river

bridge

Graph-theoretic models
 Wait-for graph.

 Resource-allocation graph.

Wait-for graph

P1

P4

P5

P2

P3

Resource allocation graph

P1 P2

P3

r1 r2

Resource allocation graph
Without deadlock

P1 P2

P3

With deadlock

Wait-for graph and Resource-
allocation graph conversion
 Any resource allocation graph with a single

copy of resources can be transferred to a
wait-for graph.

P1

P2P3

P1

P2P3

Deadlock conditions
 The condition for deadlock in a system using the

AND condition is the existence of a cycle.
 The condition for deadlock in a system using the

OR condition is the existence of a knot.

 A knot (K) consists of a set of nodes such that for
every node a in K, all nodes in K and only the
nodes in K are reachable from node a.

Example: OR condition

P1 P2

P3

P4

P5

P1 P2

P3

P4

P5

No deadlock Deadlock

Deadlock Prevention
 1. A process acquires all the needed resources

simultaneously before it begins its execution,
therefore breaking the hold and wait condition.

 E.g. In the dining philosophers’ problem, each
philosopher is required to pick up both forks at
the same time. If he fails, he has to release the
fork(s) (if any) he has acquired.

 Drawback: over-cautious.

 2. All resources are assigned unique numbers. A process
may request a resource with a unique number I only if it
is not holding a resource with a number less than or equal
to I and therefore breaking the circular wait condition.

 E.g. In the dining philosophers problem, each philosopher
is required to pick a fork that has a larger id than the one
he currently holds. That is, philosopher P5 needs to pick
up fork F5 and then F1; the other philosopher Pi should
pick up fork Fi followed by Fi-1.

 Drawback: over-cautions.

 3. Each process is assigned a unique priority number. The
priority numbers decide whether process Pi should wait
for process Pj and therefore break the non-preemption
condition.

 E.g. Assume that the philosophers’ priorities are based on
their ids, i.e., Pi has a higher priority than Pj if i <j. In this
case Pi is allowed to wait for Pi+1 for I=1,2,3,4. P5 is not
allowed to wait for P1. If this case happens, P5 has to
abort by releasing its acquired fork(s) (if any).

 Drawback: starvation. The lower priority one may always
be rolled back. Solution is to raise the priority every time
it is victimized.

 4. Practically it is impossible to provide a method to
break the mutual exclusion condition since most
resources are intrinsically non-sharable, e.g., two
philosophers cannot use the same fork at the same time.

A Deadlock Prevention Example
 Wait-die
 Wants Resource Hold Resource
 Old process ----- Young process
 10 20
 Waits

 Wants resource Holds resource
 Young process 20 Old process 10

 Dies

 Wait-die is a non-preemptive method.

 Wound-wait
 Wants resource Hold resource

 Old process 10 Young process 20

 Preempts

 Wants resource Hold resource

 Young process 20 Old process 10

 Waits

An example
Process id priority 1st request

time
length Retry

interval

P1 2 1 1 1

P2 1 1.5 2 1

P3 4 2.1 2 2

P4 5 3.3 1 1

P5 3 4.0 2 3

Deadlock Avoidance
Four resources ABCD. A has 6 instances, B has 3 instances, C
Has 4 instances and D has 2 instances.

Process Allocation Max
 ABCD ABCD
P1 3011 4111
P2 0100 0212
P3 1110 4210
P4 1101 1101
P5 0000 2110
Is the current state safe?
If P5 requests for (1,0,1,0), can this be granted?

Deadlock Detection and
Recovery
 Centralized approaches

 Distributed approaches

 Hierarchical approaches

Centralized approaches
Machine 0 Machine 1 Coordinator Coordinator

A S

R

B

Holds

Wants

Holds

C

T

S
Wants

Holds

C

T

SA

R

B

C

T

SA

R

B

B releases R and then B wants T.
But B wants T reaches coordinator first
and results in false deadlock.

Distributed approaches
 A copy of the global wait-for graph is kept

at each site with the result that each site has
a global view of the system.

 The global wait-for graph is divided and
distributed to different sites.

	Deadlock Prevention, Avoidance, and Detection
	The Deadlock problem
	Deadlock example
	Conditions for deadlocks
	An example
	Graph-theoretic models
	Wait-for graph
	Resource allocation graph
	Wait-for graph and Resource-allocation graph conversion
	Deadlock conditions
	Example: OR condition
	Deadlock Prevention
	Slide 13
	Slide 14
	A Deadlock Prevention Example
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Deadlock Avoidance
	Deadlock Detection and Recovery
	Centralized approaches
	Distributed approaches

