# **Digital Signal Processing**

Mr. Nitin Kumar
Assistant Professor
ECE Department

#### **Z-Transform**

Fourier Transform of a discrete time signal:

$$X(e^{jw}) = \sum_{k=-\infty}^{\infty} x(k)e^{-jwk}$$

Given a sequence x(n), its z transform is defined:

$$X(z) = \sum_{n=-\infty}^{\infty} x(n)z^{-n}$$

Where **z** is a **complex variable**  $z=e^{j\omega}$ 

- The z transform does not converge for all sequences or for all values of z
- The set of values of z for which the z transform converges is called region of convergence
- The properties of the sequence x(n) determines the region of convergence of X(z)

# **Z TRANSFORM AND DFT Z-Transform**

**Finite-Length Sequences** : FIR filters  $X(z) = \sum_{n=0}^{\infty} x(n)z^{-n}$ 

$$X(z) = \sum_{n=n_1}^{n_2} x(n) z^{-n}$$

**Convergence** requires :

$$|x(n)| < \infty$$
  $n_1 \le n \le n_2$ 

$$n_1 \le n \le n_2$$

**z** may take all values **except** :  $z = \infty$  if  $n_1 < 0$ 

$$z=\infty$$
 if  $n_1<0$ 

and 
$$z = 0$$
 if  $n_2 > 0$ 

Region of convergence :  $0 < |z| < \infty$ 

$$0 < |z| < \infty$$

Compute X(z):

$$z = 1 (\omega = 0)$$

$$z = j (\omega = \pi/2)$$

$$z = -1 (\omega = \pi)$$

Unit circle inside

Region of convergence



# Z TRANSFORM AND DFT Z-Transform

In many cases X(z) is a rational function:

#### **Ratio of polynomials**

Values of z for which X(z)=0 Zeros of X(z)

Values of **z** for which **X(z)=infinity Poles** of **X(z)** 

- No poles of X(z) can occur within the region of convergence (is bounded by poles)
- Graphically display z transform by pole-zero plot

#### **Example:**

Compute the **z** transform of the sequence  $x(n)=a^nu(n)$ 

$$X(z) = \sum_{n=-\infty}^{\infty} a^n u(n) z^{-n} = \sum_{n=0}^{\infty} (az^{-1})^n =$$
 $= \frac{1}{1 - az^{\frac{1}{1-n}}} = \frac{z}{z-a}$ 

# Z TRANSFORM AND DFT Z-Transform



- If |a|<1 the unit circle is included in the region of convergence, X(z) converges
- For causal systems X(z) converges everywhere outside a circle passing through the pole farthest from the origin of the plane.

# **Z-Transform**

| Ακολουθία             | Μετασχηματισμός Ζ                                               |
|-----------------------|-----------------------------------------------------------------|
| $\delta(n)$           | 1                                                               |
| $\alpha^n u(n)$       | $\frac{1}{1-\alpha z^{-1}}$                                     |
| $-\alpha^n u(-n-1)$   | $\frac{1}{1-\alpha z^{-1}}$                                     |
| $n\alpha^n u(n)$      | $\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$                     |
| $-n\alpha^n u(-n-1)$  | $\frac{\alpha z^{-1}}{(1-\alpha z^{-1})^2}$                     |
| $\cos(n\omega_0)u(n)$ | $\frac{1-(\cos\omega_0)z^{-1}}{1-2(\cos\omega_0)z^{-1}+z^{-2}}$ |
| $\sin(n\omega_0)u(n)$ | $(\sin \omega_0)z^{-1}$                                         |
|                       | $1-2(\cos\omega_0)z^{-1}+z^{-2}$                                |

Properties of the Z-Transform

1) Linearity: 
$$ax_1(n) + bx_2(n) \Rightarrow aX_1(z) + bX_2(z)$$

2) Shifting: 
$$x(n-m) \Rightarrow z^{-m}X(z)$$

3) Time scaling by a Complex Exponential Sequence : 
$$a^n x(n) \Rightarrow X(a^{-1}z)$$

4) Convolution: 
$$y(n) = x(n) * h(n) \Rightarrow Y(z) = X(z)H(z)$$

5) Differentiation: 
$$nx(n) \Rightarrow -z \frac{dX(z)}{dz}$$

# Relationship between Z-Transform and Laplace

- If  $z=e^{sT}$ ,  $s=d+j\omega$  $z=e^{(d+j\omega)T}=e^{dT}e^{j\omega T}$
- Then,

$$\mid z \mid = e^{dT}$$
  $\angle z = \omega T = 2\pi f/F_s = 2\pi \omega/\omega_s$ 



- Stability: Poles should be inside the unit circle
- **Stability** criterion: Finding the poles of the system
- FIR digital filters always stable: Poles in origin

#### **Geometric Evaluation of Fourier Transform**

- X(z) has M zeros at z=z<sub>1</sub>,z<sub>2</sub>,...,z<sub>M</sub>
- X(z) has N poles at z=p<sub>1</sub>,p<sub>2</sub>,...,p<sub>N</sub>
- We can write X(z) in factored form:

$$X(z) = A rac{\prod\limits_{i=1}^{M} (1-z_i z^{-1})}{\prod\limits_{i=1}^{N} (1-p_i z^{-1})}$$

Multiplying factors X(z) can be written as a rational fraction:

$$X(z) = rac{\sum\limits_{i=0}^{M} a_i z^{-i}}{1 + \sum\limits_{i=1}^{N} b_i z^{-i}}$$

GITAM ECE

This form is often used for general filter design

#### **Geometric Evaluation of Fourier Transform**

#### The Fourier transform or system function:

Evaluating X(z) on the unit circle, z=e<sup>jω</sup>

$$X(e^{j\omega}) = A \frac{\prod\limits_{i=1}^{M} (1 - z_i e^{-j\omega})}{\prod\limits_{i=1}^{N} (1 - p_i e^{-j\omega})}$$

$$\left|egin{array}{c} X(e^{j\omega}) 
ight| = \left|A 
ight| \left| egin{array}{c} 1 - z_i e^{-j\omega} 
ight| & \prod\limits_{i=1}^M \left|e^{j\omega} - z_i
ight| \ X(e^{j\omega}) \left| = \left|A 
ight| \left| egin{array}{c} rac{i=1}{N} 
ight| 1 - p_i e^{-j\omega} 
ight| & \prod\limits_{i=1}^M \left|e^{j\omega} - p_i
ight| \ \end{array}
ight|$$

$$\angle X(e^{j\omega}) = \angle A + \sum_{i=1}^{M} \angle (1 - z_i e^{-j\omega}) - \sum_{i=1}^{N} \angle (1 - p_i e^{-j\omega})$$

# Z TRANSFORM AND DFT Geometric Evaluation of Fourier Transform



- From the point  $z=e^{j\omega}$  draw vectors to zeros and poles
- Magnitudes of vectors determine magnitude at ω
- Angles determine phase

Example : 
$$|X(e^{j\omega})| = \frac{Z_1Z_2}{P_1P_2P_3}$$

$$\angle X(e^{j\omega}) = heta_1 + heta_2 - (\psi_1$$
mec $\psi_2 + \psi_3)$ 

#### **Inverse Z-Transform**

#### From the inverse z transform we get x(n)

- Power series (long division)
- Partial fraction expansion
- Residue Theorem

#### Power series (long division)

X(z) can be written as rational fraction:

$$X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_M z^{-M}}$$

It can be extended into an infinite series in z-1 by long division:

$$X(z) = x(0) + x(1)z^{-1} + x(2)z^{-2} + x(3)z^{-3} + \dots$$

#### **Inverse Z-Transform**

#### **Example:**

Find the first 4 values of the sequence f(k)

$$F(z) = \frac{2z^{-1}}{2z^{-2} - 3z^{-1} + 1} = \frac{2z}{z^2 - 3z + 2}$$

$$\frac{2z}{z^2 - 3z + 2} = 2z^{-1} + 6z^{-2} + 14z^{-3} + \cdots$$

$$f(k)=\{0,2,6,14....\}$$

The long division approach can be reformulated so x(n) can be obtained recursively:

ong division approach can be reformulated so 
$$\mathbf{x}(\mathbf{n})$$
 can be  $x(n) = \frac{\left[a_n - \sum\limits_{i=1}^n x(n-i)b_i\right]}{b_0}$   $n=1,2,...$   $x(0) = \frac{a_0}{b_0}$  GITAM ECE

#### **Inverse Z-Transform**

#### **Partial fraction expansion:**

$$X(z) = \frac{a_0 + a_1 z^{-1} + a_2 z^{-2} + \ldots + a_N z^{-N}}{b_0 + b_1 z^{-1} + b_2 z^{-2} + \ldots + b_M z^{-M}}$$

If poles of X(z) first order (distinct) and N=M,

$$X(z) = B_0 + \frac{C_1}{1 - p_1 z^{-1}} + \frac{C_2}{1 - p_2 z^{-1}} + \dots + \frac{C_M}{1 - p_M z^{-1}}$$

$$= B_0 + \frac{C_1 z}{z - p_1} + \frac{C_2 z}{z - p_2} + \dots + \frac{C_M z}{z - p_M}$$

- p(k): distinct poles, C<sub>k</sub> partial fraction coef.
- $B_0=a_0/b_0$
- If N<M then B<sub>0</sub>= 0
- If N>M then by long division make N<=M
  GITAM ECE</li>

#### **Inverse Z-Transform**

• The coefficient  $C_k$  can be derived as:

$$C_k = \frac{X(z)}{z}(z - p_k) \bigg|_{z=p_k}$$

If X(z) contains multiple poles extra terms are required - X(z) contains mth-order poles:

$$\sum_{i=1}^m \frac{D_i}{(z-p_k)^i}$$

$$D_{i} = \frac{1}{(m-i)!} \frac{d^{m-i}}{dz^{m-i}} \Big[ (z - p_{k})^{m} X(z) \Big] \bigg|_{z=p_{k}}$$

#### **Inverse Z-Transform**

#### **Example:**

Find the inverse z-transform:

$$X(z) = \frac{2z^{-1}}{2z^{-2} - 3z^{-1} + 1} = \frac{2z}{z^2 - 3z + 2} = \frac{2z}{(z - 2)(z - 1)}$$

$$\frac{X(z)}{z} = \frac{2}{(z - 2)(z - 1)} = \frac{C_1}{(z - 1)} + \frac{C_2}{(z - 2)}$$

$$C_1 = \frac{X(z)}{z}(z - 1) \Big|_{z=1} = \frac{2}{(1 - 2)} = -2$$

$$C_2 = \frac{X(z)}{z}(z - 2) \Big|_{z=2} = \frac{2}{(2 - 1)} = 2$$

$$Z^{-1} = \left[\frac{z}{(z - a)}\right] = a^n, \quad n \ge 0$$

$$Z^{-1} = \left[\frac{z}{(z - 1)}\right] = u(n), \quad n \ge 0$$
GITAM ECE. 
$$x(n) = 2 \cdot 2^n - 2, \quad n \ge 0$$

#### **Inverse Z-Transform**

#### **Residue Theorem**

**IZT** obtained by evaluating the contour integral:

$$x(n) = \frac{1}{2\pi j} \oint_C z^{n-1} X(z) dz$$

• Where **C** is the path of integration enclosing all the poles of X(z).

#### Cauchy's residue theorem:

- Sum of the residues of z <sup>n-1</sup>X(z) at all the poles inside C
- Every residue C<sub>k</sub>, is associated with a pole at p<sub>k</sub>

$$Res\Big[z^{n-1}X(z),p_k\Big] = \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \Big[(z-p_k)z^{n-1}X(z)\Big] \Big|_{z=p_k}$$

- m is the order of the pole at z=p<sub>k</sub>
- For a **first-order** pole:

$$Resigg[z^{n-1}X(z),p_kigg]=(z-p_k)z^{n-1}X(z)igg|_{z=p_k}$$

#### **Inverse Z-Transform**

#### **Example:**

Find the **inverse z** transform : 
$$X(z) = \frac{z^2}{(z-0.5)(z-1)^2}$$

$$z^{n-1}X(z) = \frac{z^{n+1}}{(z-0.5)(z-1)^2}$$

Single pole @ z=0.5, second-order pole @ z=1

$$Res \left[ z^{n-1} X(z), 0.5 \right] = \frac{(z - 0.5) z^{n+1}}{(z - 0.5) (z - 1)^2} = \frac{z^{n+1}}{(z - 1)^2} \Big|_{z = 0.5}$$
$$= \frac{(0.5)^{n+1}}{(-0.5)^2} = 2(0.5)^n$$

$$egin{array}{lll} Res \Big[ z^{n-1} X(z), 1 \Big] &=& rac{d}{dz} \Big[ rac{(z-1)^2 z^{n+1}}{(z-0.5)(z-1)^2} \Big] \ &=& rac{(z-0.5)(n+1) z^n - z^{n+1}}{(z-0.5)^2} \, \Big|_{z=1} \ &=& rac{(0.5)(n+1) - 1}{(0.5)^2} = 2(n-1) \end{array}$$

#### **Inverse Z-Transform**

Combining the results we have:

$$x(n)=2[(n-1)+(0.5)^n]$$

No need to use inverse tables!!!

#### Comparison of the inverse z-transform

Power series:

Does not lead to a closed form solution, it is **simple**, easy computer implementation

- Partial fraction, residue:
  - Closed form solution,
  - Need to factorize polynomial (find poles of X(z))
  - May involve high order differentiation (multiple poles)
- Partial fraction: Useful in generating the coefficients of parallel structures for digital filters.
- \* Residue method: widely used in the analysis of quantization errors in discrete-time systems.

# Solving Difference Equations Using Z-Transform

The difference equation of interest (IIR filters) is:

$$y(n) = \sum_{i=0}^{N} b_i x(n-i) - \sum_{i=0}^{M} a_i y(n-i) \qquad n \ge 0$$

The z-transform is:

$$Y(z) = \sum_{i=0}^N b_i z^{-i} X(z) - \sum_{i=0}^M a_i z^{-i} Y(z)$$

Transfer function is:

$$H(z) = rac{Y(z)}{X(z)} = rac{\sum\limits_{i=0}^{N} b_i z^{-i}}{1 + \sum\limits_{i=0}^{M} a_i z^{-i}}$$

If coefficients  $\mathbf{a_i} = \mathbf{0}$  (FIR filter):  $H(z) = \frac{Y(z)}{X(z)} = \sum_{i=0}^{N} b_i z^{-i}$ 

# Solving Difference Equations Using Z-Transform

#### **Example:**

Find the output of the following filter: y(n) = x(n) + a y(n-1)

Initial condition: y(-1) = 0

Input:  $\mathbf{x}(\mathbf{n}) = \mathbf{e}^{\mathrm{j}\omega\mathbf{n}} \mathbf{u}(\mathbf{n})$ 

Using z transform:

$$Y(z) = X(z) + a z^{-1} Y(z)$$

$$x(n) = e^{jwn}, \qquad X(z) = \frac{1}{1 - e^{jw}z^{-1}}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{1}{1 - az^{-1}}$$

$$Y(z) = H(z)X(z) = \frac{1}{(1 - az^{-1})(1 - e^{jw}z^{-1})}$$

Using partial fraction expansion:

$$Y(z) = \frac{a/(a-e^{jw})}{(1-az^{-1})} + \frac{-e^{jw}/(a-e^{jw})}{(1-e^{jw}z^{-1})}$$

GITA
$$y$$
( $n$ ) $= \Big[rac{a^n}{a-e^{jw}} - rac{e^{jwn}}{a-e^{jw}}\Big]u(n)$ 

### **Discrete Fourier Transform (DFT)**

- Techniques for representing sequences:
  - ❖ Fourier Transform
  - **❖ Z-transform**
  - Convolution summation
- Three good reasons to study DFT
  - It can be efficiently computed
  - Large number of applications
    - Filter design
    - Fast convolution for FIR filtering
    - Approximation of other transforms
  - Can be finitely parametrized
- When a sequence is **periodic** or **of finite duration**, the sequence can be represented in a **discrete-Fourier series**
- Periodic sequence x(n), period N,

$$x(n) = \sum_{k=-\infty}^{\infty} X(k) e^{j(2\pi/N)k\pi}$$

# **Discrete Fourier Transform (DFT)**

- Remember: e<sup>jω</sup> periodic with frequency 2π
- $2\pi k n / N = 2\pi n \rightarrow k = N$
- N distinct exponentials

$$x(n) = \frac{1}{N} \sum_{k=0}^{N-1} X(k) e^{j(2\pi/N)kn}$$

,1/N just a scale factor

• The **DFT** is defined as:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j2\pi kn/N} = X(e^{jw}) \bigg|_{w=2\pi k/N}$$

• **DFT coefficients** correspond to **N** samples of **X(z)**:

$$X(k) = X(z)$$
  $\bigg|_{z=e^{j2\pi k/N}}$ 

# Z TRANSFORM AND DFT Properties of the DFT

#### Linearity

If x(n) and y(n) are sequences (N samples) then:

$$a x(n) + b y(n) \leftarrow \rightarrow a X(k) + b Y(k)$$

Remember: x(n) and y(n) must be N samples,

otherwise zerofill

#### **Symmetry**

If **x(n)** is a **real** sequence of **N samples** then:

Re[X(k)] = Re [X(N-k)]  
Im[X(k)] = -Im[X(N-k)]  

$$|X(K)| = |X(N-k)|$$
  
Phase X(k) = - Phase X(N-k)

If x(n) is real and symmetric x(n) = x(N-n) then:

X(K) is purely real

GITAM ECE

### Properties of the DFT

### **Shifting Property**

If x(n) is periodic then  $x(n) \leftarrow X(k)$ ,

 $x(n-n_0) \leftarrow X(k) e^{-j(2\pi/N)} n_0^{k}$ 

If x(n) is not periodic then time-shift is created by rotating x(n) circularly by  $n_0$ 

samples.



(α) Ένα σήμα διακριτού χρόνου μήκους N=4.



(β) Κυκλική μετατόπιση κατά ένα.



(γ) Κυκλική μετατόπιση κατά δύο.



(δ) Κυκλική μετατόπιση κατά τρία.

### Convolution of Sequences

If x(n), h(n) are periodic sequences period N, DFTs:

$$X(k) = \sum_{n=0}^{N-1} x(n)e^{-j(2\pi/N)nk}$$

$$H(k) = \sum_{n=0}^{N-1} h(n)e^{-j(2\pi/N)nk}$$

$$H(k) = \sum_{n=0}^{N-1} h(n)e^{-j(2\pi/N)nk}$$

y(n): circular convolution of x(n), h(n)

Y(k) N-point DFT of y(n)

$$y(n) = \sum_{l=0}^{N-1} x(l)h(n-l) = x(n) \otimes h(n)$$

$$Y(k) = X(k) \cdot H(k)$$

Linear convolution has infinite sum.

$$y(n) = \sum_{l=-\infty}^{\infty} x(l) h(n-l)$$

# **Convolution of Sequences**

- Imagine one sequence around a circle N points.
- Second sequence around a circle N points but timed reversed

Convolution: multiply values of 2 circles, shift

multiply, shift, ..... N times

**Example:** 



# **Convolution of Sequences**

$$n = -1 - 2 - 3 - 4 - 5 - 6 - 7 0 1 2 3 4 5 6 7 ... \\ x(n) 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 ... \\ h(-m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(2 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(3 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(4 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(6 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(7 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(8 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(9 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.5 0.3 0.1 \\ h(0 - m) 1.5 1.3 1.1 0.9 0.7 0.$$

#### **Sectioned Convolution**

- Fast Convolution: Using DFT for 2 finite sequences
  - Evaluated Rapidly, efficiently with FFT
  - $N_1+N_2 > 30 \rightarrow$  Fast Convolution more efficient
- Direct Convolution: direct evaluation
- $L > N_1 + N_2$  Add zeros to achieve L power of 2

#### **Sectioned Convolution**

- $N_1 \gg N_2$  ,what to do?
- L > N<sub>1</sub>+N<sub>2</sub>, inefficient and impractical. Why?
- Long sequence must be available before convolution
  - Practical waveforms: Speech, Radar not available
  - ❖ No processing before entire sequence Long delays
- Solution: Sectioned Convolution
- Overlap Add
- Overlap Save

#### **Sectioned Convolution**

#### Overlap - Add

- Long sequence x(n) infinite duration
- Short sequence h(n) N<sub>2</sub> duration
- x(n) is sectioned N<sub>3</sub> or L or M

$$x(n) = \sum_{k=0}^{\infty} x_k(n)$$

$$x_k(n) = egin{cases} x(n) & kN_3 \leq n \leq (k+1)N_3 - 1, \ 0 & ext{allows} \end{cases}$$

$$y(n) = \sum_{m=0}^{n} h(m) \sum_{k=0}^{\infty} x_k(n-m) = \sum_{k=0}^{\infty} y_k(n)$$

Duration of each convolution N<sub>3</sub> + N<sub>2</sub> - 1 (overlap)



# **Sectioned Convolution**





# Thank You