Data Communication

Network Topologies
The term *telecommunication* means communication at a distance. The word *data* refers to information presented in whatever form is agreed upon by the parties creating and using the data. *Data communications* are the exchange of data between two devices via some form of transmission medium such as a wire cable.

Topics discussed in this section:
- Components of a data communications system
- Data Flow
Figure 1.1 Components of a data communication system
Figure 1.2 Data flow (simplex, half-duplex, and full-duplex)
A network is a set of devices (often referred to as nodes) connected by communication links. A node can be a computer, printer, or any other device capable of sending and/or receiving data generated by other nodes on the network. A link can be a cable, air, optical fiber, or any medium which can transport a signal carrying information.

Topics discussed in this section:

- Network Criteria
- Physical Structures
- Categories of Networks
Network Criteria

- **Performance**
 - Depends on Network Elements
 - Measured in terms of Delay and Throughput

- **Reliability**
 - Failure rate of network components
 - Measured in terms of availability/robustness

- **Security**
 - Data protection against corruption/loss of data due to:
 - Errors
 - Malicious users
Physical Structures

- **Type of Connection**
 - Point to Point - single transmitter and receiver
 - Multipoint - multiple recipients of single transmission

- **Physical Topology**
 - Connection of devices
 - Type of transmission - unicast, multicast, broadcast
Figure 1.3 *Types of connections: point-to-point and multipoint*
Figure 1.4 Categories of topology

- Topology
 - Mesh
 - Star
 - Bus
 - Ring
Figure 1.5 A fully connected mesh topology (five devices)
Figure 1.6 *A star topology connecting four stations*
Figure 1.7 *A bus topology connecting three stations*
Figure 1.8 *A ring topology connecting six stations*
Figure 1.9 A hybrid topology: a star backbone with three bus networks
Categories of Networks

- **Local Area Networks (LANs)**
 - Short distances
 - Designed to provide local interconnectivity

- **Wide Area Networks (WANs)**
 - Long distances
 - Provide connectivity over large areas

- **Metropolitan Area Networks (MANs)**
 - Provide connectivity over areas such as a city, a campus
Figure 1.10 An isolated LAN connecting 12 computers to a hub in a closet
Figure 1.11 **WANs: a switched WAN and a point-to-point WAN**

![Diagram of switched and point-to-point WANs](image-url)

(a) Switched WAN

(b) Point-to-point WAN
Figure 1.12 A heterogeneous network made of four WANs and two LANs
The Internet has revolutionized many aspects of our daily lives. It has affected the way we do business as well as the way we spend our leisure time. The Internet is a communication system that has brought a wealth of information to our fingertips and organized it for our use.

Topics discussed in this section:

Organization of the Internet
Internet Service Providers (ISPs)
Figure 1.13 Hierarchical organization of the Internet
A protocol is synonymous with rule. It consists of a set of rules that govern data communications. It determines what is communicated, how it is communicated and when it is communicated. The key elements of a protocol are syntax, semantics and timing.

Topics discussed in this section:

- Syntax
- Semantics
- Timing
Elements of a Protocol

- **Syntax**
 - Structure or format of the data
 - Indicates how to read the bits - field delineation

- **Semantics**
 - Interprets the meaning of the bits
 - Knows which fields define what action

- **Timing**
 - When data should be sent and what
 - Speed at which data should be sent or speed at which it is being received.