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Deterministic Finite Automata
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Alphabets

An alphabet is any finite set of 
symbols.

Examples: ASCII, Unicode, {0,1} 
(binary alphabet ), {a,b,c}.
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Strings

The set of strings over an alphabet Σ is 

the set of lists, each element of which is 
a member of Σ.

Strings shown with no commas, e.g., abc.

Σ* denotes this set of strings.

ε stands for the empty string (string of 

length 0).
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Example: Strings

{0,1}* = {ε, 0, 1, 00, 01, 10, 11, 000, 

001, . . . }

Subtlety: 0 as a string, 0 as a symbol 
look the same.

Context determines the type.



5

Languages

A language is a subset of Σ* for some 
alphabet Σ.

Example: The set of strings of 0’s and 
1’s with no two consecutive 1’s.

L = {ε, 0, 1, 00, 01, 10, 000, 001, 010, 

100, 101, 0000, 0001, 0010, 0100, 
0101, 1000, 1001, 1010, . . . }

Hmm… 1 of length 0, 2 of length 1, 3, of length 2, 5 of length
3, 8 of length 4.  I wonder how many of length 5?
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Deterministic Finite Automata

A formalism for defining languages, 
consisting of:

1. A finite set of states (Q, typically).

2. An input alphabet (Σ, typically).

3. A transition function (δ, typically).

4. A start state (q0, in Q, typically).

5. A set of final states (F ⊆ Q, typically).

“Final” and “accepting” are synonyms.
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The Transition Function

Takes two arguments: a state and an 
input symbol.

δ(q, a) = the state that the DFA goes 

to when it is in state q and input a is 
received.
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Graph Representation of DFA’s 

Nodes = states.

Arcs represent transition function.

Arc from state p to state q labeled by all 
those input symbols that have transitions 
from p to q.

Arrow labeled “Start” to the start state.

Final states indicated by double circles.
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Example: Graph of a DFA

Start

1

0

A CB
1

0 0,1

Previous
string OK,
does not
end in 1.

Previous
String OK,
ends in a 
single 1.

Consecutive
1’s have
been seen.

Accepts all strings without two consecutive 1’s.
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Alternative Representation: 
Transition Table

0 1

A A B
B A C
C C C

Rows = states

Columns =
input symbols

Final states
starred

*

*Arrow for
start state
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Extended Transition Function

We describe the effect of a string of 
inputs on a DFA by extending δ to a 

state and a string.

Induction on length of string.

Basis: δ(q, ε) = q

Induction: δ(q,wa) = δ(δ(q,w),a)

w is a string; a is an input symbol.
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Extended δ: Intuition

Convention:

… w, x, y, x are strings.

a, b, c,… are single symbols.

Extended δ is computed for state q and 

inputs a1a2…an by following a path in 
the transition graph, starting at q and 
selecting the arcs with labels a1, a2,…,an

in turn.
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Example: Extended Delta

0 1

A A B
B A C
C C C

δ(B,011) = δ(δ(B,01),1) = δ(δ(δ(B,0),1),1) =

δ(δ(A,1),1) = δ(B,1) = C



14

Delta-hat

In book, the extended δ has a “hat” to 
distinguish it from δ itself.

Not needed, because both agree when 
the string is a single symbol.

δ(q, a) = δ(δ(q, ε), a) = δ(q, a)
˄˄

Extended deltas
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Language of a DFA

Automata of all kinds define languages.

If A is an automaton, L(A) is its 
language.

For a DFA A, L(A) is the set of strings 
labeling paths from the start state to a 
final state.

Formally: L(A) = the set of strings w 
such that δ(q0, w) is in F.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

String 101 is in the language of the DFA below.
Start at A.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Follow arc labeled 1.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Then arc labeled 0 from current state B.

String 101 is in the language of the DFA below.
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Example: String in a Language

Start

1

0

A CB
1

0 0,1

Finally arc labeled 1 from current state A.  Result
is an accepting state, so 101 is in the language.

String 101 is in the language of the DFA below.
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Example – Concluded

The language of our example DFA is:

{w | w is in {0,1}* and w does not have

two consecutive 1’s}

Read a set former as
“The set of strings w…

Such that…
These conditions
about w are true.
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Proofs of Set Equivalence

Often, we need to prove that two 
descriptions of sets are in fact the same 
set.

Here, one set is “the language of this 
DFA,” and the other is “the set of 
strings of 0’s and 1’s with no 
consecutive 1’s.”
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Proofs – (2)

In general, to prove S=T, we need to 
prove two parts: S ⊆ T and T ⊆ S.  

That is:

1. If w is in S, then w is in T.

2. If w is in T, then w is in S.

As an example, let S = the language 
of our running DFA, and T = “no 
consecutive 1’s.”
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Part 1: S ⊆ T

To prove: if w is accepted by

then w has no consecutive 1’s.

Proof is an induction on length of w.

Important trick: Expand the inductive 
hypothesis to be more detailed than 
you need.

Start

1

0

A CB 1
0 0,1
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The Inductive Hypothesis

1. If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.

2. If δ(A, w) = B, then w has no 

consecutive 1’s and ends in a single 1.

Basis: |w| = 0; i.e., w = ε.

(1) holds since ε has no 1’s at all.

(2) holds vacuously, since δ(A, ε) is not B.

“length of”
Important concept:
If the “if” part of “if..then” is false,
the statement is true.
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Inductive Step

Assume (1) and (2) are true for strings 
shorter than w, where |w| is at least 1.

Because w is not empty, we can write 
w = xa, where a is the last symbol of 
w, and x is the string that precedes.

IH is true for x.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (2)

Need to prove (1) and (2) for w = xa.

(1) for w is: If δ(A, w) = A, then w has no 

consecutive 1’s and does not end in 1.

Since δ(A, w) = A, δ(A, x) must be A or B, 

and a must be 0 (look at the DFA).

By the IH, x has no 11’s.

Thus, w has no 11’s and does not end in 1.

Start

1

0

A CB 1
0 0,1
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Inductive Step – (3)

Now, prove (2) for w = xa: If δ(A, w) = 

B, then w has no 11’s and ends in 1.

Since δ(A, w) = B, δ(A, x) must be A, 

and a must be 1 (look at the DFA).

By the IH, x has no 11’s and does not 
end in 1.

Thus, w has no 11’s and ends in 1.

Start

1

0

A CB 1
0 0,1
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Part 2: T ⊆ S

Now, we must prove: if w has no 11’s, 
then w is accepted by

Contrapositive : If w is not accepted by

then w has 11.

Start

1

0

A CB 1
0 0,1

Start

1

0

A CB 1
0 0,1

Key idea: contrapositive
of “if X then Y” is the
equivalent statement
“if not Y then not X.”

X

Y
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Using the Contrapositive

Every w gets the DFA to exactly one 
state.

Simple inductive proof based on:

• Every state has exactly one transition on 1, one 
transition on 0.

The only way w is not accepted is if it 
gets to C. 

Start

1

0

A CB 1
0 0,1



30

Using the Contrapositive 
– (2)

The only way to get to C [formally: 
δ(A,w) = C] is if w = x1y, x gets to B, 

and y is the tail of w that follows what 
gets to C for the first time.

If δ(A,x) = B then surely x = z1 for 

some z.

Thus, w = z11y and has 11.

Start

1

0

A CB 1
0 0,1
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Regular Languages

A language L is regular if it is the 
language accepted by some DFA.

Note: the DFA must accept only the strings 
in L, no others.

Some languages are not regular.

Intuitively, regular languages “cannot 
count” to arbitrarily high integers.
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Example: A Nonregular Language

L1 = {0n1n | n ≥ 1}

Note: ai is conventional for i a’s.

Thus, 04 = 0000, e.g.

Read: “The set of strings consisting of 
n 0’s followed by n 1’s, such that n is at 
least 1.

Thus, L1 = {01, 0011, 000111,…}
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Another Example

L2 = {w | w in {(, )}* and w is balanced }

Note: alphabet consists of the parenthesis 
symbols ’(’ and ’)’.

Balanced parens are those that can appear 
in an arithmetic expression.

• E.g.: (), ()(), (()), (()()),…
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But Many Languages are 
Regular

Regular Languages can be described in 
many ways, e.g., regular expressions.

They appear in many contexts and 
have many useful properties.

Example: the strings that represent 
floating point numbers in your favorite 
language is a regular language.
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Example: A Regular Language

L3 = { w | w in {0,1}* and w, viewed as a 
binary integer is divisible by 23}

The DFA:

23 states, named 0, 1,…,22.

Correspond to the 23 remainders of an 
integer divided by 23.

Start and only final state is 0.
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Transitions of the DFA for L3

If string w represents integer i, then 
assume δ(0, w) = i%23.

Then w0 represents integer 2i, so we 
want δ(i%23, 0) = (2i)%23.

Similarly: w1 represents 2i+1, so we 
want δ(i%23, 1) = (2i+1)%23.

Example: δ(15,0) = 30%23 = 7; 
δ(11,1) = 23%23 = 0. Key idea: design a DFA

by figuring out what
each state needs to
remember about the past.
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Another Example

L4 = { w | w in {0,1}* and w, viewed as 
the reverse of a binary integer is 
divisible by 23}

Example: 01110100 is in L4, because its 
reverse, 00101110 is 46 in binary.

Hard to construct the DFA.

But theorem says the reverse of a 
regular language is also regular.


