
Memory Coherence in Shared
Virtual Memory Systems

1

Outline

• Shared Virtual Memory

• Coherence Problem

• Memory Coherence Algorithms

• Experiments

• Conclusions

2

Interprocess Communication

• remote procedure call?
• complex data structures and pointers?

• shared virtual memory
• Provide a single address space for all processors

• Programmers can use distributed memories as traditional shared
memory.

• Both can be implemented using message passing primitives(send, recv)

3

Shared Virtual Memory

• Map a single address space to multiple physical memories

• Page data between processors(as well as between disk
and physical memory in one processor)

• Replicate data whenever possible

• View physical memories as caches of virtual storage

• Performance:
• unshared data and shared read-only data: fine
• writes to shared data?

• fine if locality is good

• Problem: memory coherence

4

Coherence Problem

• fundamental reason: Multiple copies of the same data

• Suppose P1 in CPU1 and P2 in CPU2 map to the same virtual page and each has a copy
of it.

• Coherence: value returned by read is always the same as the value written by latest write.

• Ideas borrowed from Directory Coherence Protocol

• Usually only one writer is allowed at a time.

5

CPU1

P1: 1

CPU2

P2: 1

1: CPU1 updates P1 to 2

P1: 1 -> 2

2: CPU1 tries to read P2

Wrong data!

CPU1

P1: 1->2

CPU2

P2: 1->3

1: CPU1 update P1 to 2 1: CPU1 update P2 to 3

Which to choose?

Designing Shared Virtual Memory

• Design Choices
• Page Size

• Granularity of Network Communication
• Too small: Overhead of a single message
• Too large: Contention for accessing a page(false sharing)
• Application dependent!

• Coherence Algorithms
• How to synchronize physical pages across the system?

• Invalidation or write-broadcast?

• How to maintain the ownership of a virtual page?
• Ownership defines who respond to a request.
• Page table maintains ownership by setting read-write bits.
• Ownership should be unique but dynamic.
• Manager tracks the owners of all pages.
• Centralized or distributed?
• Fixed or dynamic?

6

Memory Coherence Algorithms

• Centralized Manager

7

Manager

owner

copyset

CPU Ptable

access

CPU1

NIL

CPU2

Read

CPU3

Read(Owner)

Manager

CPU3

{CPU2}

1: Wri te Fault Request
3: Forward Request

4: Send page

CPU3

NIL

CPU1

Write(Owner)

5: Confi rmation

Manager

CPU1

{}

2: Inva lidate local copy

CPU2

NIL

Lock cpu1.Ptable[p]

Lock manager

unLock manager

Unlock cpu1.ptable[p]

Lock cpu3.Ptable[p]

unLock cpu3.Ptable[p]

Why do we need confirmation message?

1. Manager synchronizes the

ownership.

2. Manager must know that

request is completed

before processing the next.

Memory Coherence Algorithms

• Improved Centralized Manager
• Owner itself can synchronize ownership

• Collocate copyset with the owner

8

Manager

owner

CPU Ptable

copyset

access

CPU1

N/A

NIL

CPU2

N/A

Read

CPU3

{CPU2}

Read(Owner)

Manager

CPU1

1: Wri te Fault Request
2: Forward Request

3: Send page and copyset

CPU3

N/A

NIL

CPU1

{CPU2}

NIL

Manager

CPU3

4: Inva lidation

CPU1

{}

Write(Owner)

CPU2

N/A

NIL

Contention: all faults to all pages go to a single manager.

Memory Coherence Algorithms

• Fixed Distributed Manager
• Distribute Manager by Interleaving Page Number

• Can still suffer from contention since manager is statically distributed.

9

CPU1

NIL

CPU2

NIL

CPU3

Write(Owner)

P0:Manager

P3:Manager

P1:Manager

P4:Manager

P2:Manager

P5:Manager

Memory Coherence Algorithms

• Dynamic Distributed Manager
• Merge Manager into Ptable

• Ptable entry probably knows the owner.

10

CPU Ptable

probOwner

copyset

access

CPU1

CPU2

N/A

NIL

CPU2

CPU3

N/A

NIL

CPU3

Self

{CPU3}

Write

1: Read Fault Request 2: Forward Request

2: Send Page

CPU1

CPU3

N/A

Read

CPU2

CPU1

N/A

NIL

CPU3

Self

{CPU1, CPU3}

Read

Memory Coherence Algorithms

• Can a request always find the true owner?

• Theorem 1
• A page fault on any processor reaches the true owner of the page

using at most N-1 forwarding requests.

11

Memory Coherence Algorithms

P0 P1

P3

P2

P4

• a glance at the proof
• probOwner graph Gp: processors point to their probOwner

• Gp is directed and acyclic (rooted tree) after initialization.
• All processors point to the true owner.

• The graph modified by any requests is still a rooted tree.

• Maximum path length of a tree: N-1

12

P0

P1

P2 P3

P4

P0

P1

P2 P3

P4

P0

P1

P2 P3

P4

1: P3 send request 2: P1 changes probOwner and forward request 3: P0 changes probOwner and send page to P3 4: ProbOwner Graph after a request

Experiments

• Speedup: time on single proc divided by time on SVM system

• Four Parallel Computing Programs
• 3D PDE

• Parallel Sort

• Matrix Multiplication

• Dot Product

• Comparison of Coherence Algorithms

13

3D-PDE

• Solving a Linear Equation

14

CPU1

CPU2

3D-PDE

15

Solid: experiment

Dashed: Ideal

Superlinear speedup?

Superlinear Speedup

• Number of disk pages remains high in single-processor case.

• Number of disk pages quickly decreases as starting execution.

• Reducing data size results in sublinear speedup.

16

Solid: experiment

Dashed: Ideal

Solid: single processor

Dashed: processor w/ init data in two-processor system

Dotted: processor w/o init data in two-processor system

Conclusion:

1. In single-processor case, system suffers from thrashing.

2. The working sets do not fit into one processor’s memory while they fit into two processors’ memory.

3D-PDE

17

• More physical memories reduces thrashing.

• Program exhibits a high degree of locality.

1 1

2 2

A b
x

A b

   
   

   

