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Interprocess Communication 

• remote procedure call? 
• complex data structures and pointers? 

• shared virtual memory 
• Provide a single address space for all processors 

• Programmers can use distributed memories as traditional shared 
memory. 

 

 

 

• Both can be implemented using message passing primitives(send, recv) 
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Shared Virtual Memory 

• Map a single address space to multiple physical memories 

• Page data between processors(as well as between disk 
and physical memory in one processor) 

• Replicate data whenever possible 

• View physical memories as caches of virtual storage 

 

 

• Performance: 
• unshared data and shared read-only data: fine 
• writes to shared data? 

• fine if locality is good 

 

• Problem: memory coherence 
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Coherence Problem 

• fundamental reason: Multiple copies of the same data 

• Suppose P1 in CPU1 and P2 in CPU2 map to the same virtual page and each has a copy 
of it. 

 

 

 

 

 

• Coherence: value returned by read is always the same as the value written by latest write. 

• Ideas borrowed from Directory Coherence Protocol 

• Usually only one writer is allowed at a time. 
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CPU1 

P1: 1 

CPU2 

P2: 1 

1: CPU1 updates P1 to 2 

P1: 1 -> 2 

2: CPU1 tries to read P2 

Wrong data! 

CPU1 

P1: 1->2 

CPU2 

P2: 1->3 

1: CPU1 update P1 to 2 1: CPU1 update P2 to 3 

Which to choose? 



Designing Shared Virtual Memory 

• Design Choices 
• Page Size 

• Granularity of Network Communication 
• Too small: Overhead of a single message 
• Too large: Contention for accessing a page(false sharing) 
• Application dependent! 

• Coherence Algorithms 
• How to synchronize physical pages across the system? 

• Invalidation or write-broadcast? 

• How to maintain the ownership of a virtual page? 
• Ownership defines who respond to a request. 
• Page table maintains ownership by setting read-write bits. 
• Ownership should be unique but dynamic. 
• Manager tracks the owners of all pages. 
• Centralized or distributed? 
• Fixed or dynamic? 
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Memory Coherence Algorithms 

• Centralized Manager 
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Manager 

owner 

copyset 

CPU Ptable 

access 

CPU1 

NIL 

CPU2 

Read 

CPU3 

Read(Owner) 

Manager 

CPU3 

{CPU2} 

1: Wri te Fault Request 
3: Forward Request 

4: Send page 

CPU3 

NIL 

CPU1 

Write(Owner) 

5: Confi rmation 

Manager 

CPU1 

{} 

2: Inva lidate local copy 

CPU2 

NIL 

Lock cpu1.Ptable[p] 

Lock manager 

unLock manager 

Unlock cpu1.ptable[p] 

Lock cpu3.Ptable[p] 

unLock cpu3.Ptable[p] 

Why do we need confirmation message? 

1. Manager synchronizes the 

ownership. 

2. Manager must know that 

request is completed 

before processing the next. 



Memory Coherence Algorithms 

• Improved Centralized Manager 
• Owner itself can synchronize ownership 

• Collocate copyset with the owner 
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Manager 

owner 

CPU Ptable 

copyset 

access 

CPU1 

N/A 

NIL 

CPU2 

N/A 

Read 

CPU3 

{CPU2} 

Read(Owner) 

Manager 

CPU1 

1: Wri te Fault Request 
2: Forward Request 

3: Send page and copyset 

CPU3 

N/A 

NIL 

CPU1 

{CPU2} 

NIL 

Manager 

CPU3 

4: Inva lidation 

CPU1 

{} 

Write(Owner) 

CPU2 

N/A 

NIL 

Contention: all faults to all pages go to a single manager. 



Memory Coherence Algorithms 

• Fixed Distributed Manager 
• Distribute Manager by Interleaving Page Number 

• Can still suffer from contention since manager is statically distributed. 
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CPU1 

NIL 

CPU2 

NIL 

CPU3 

Write(Owner) 

P0:Manager 

P3:Manager 

P1:Manager 

P4:Manager 

P2:Manager 

P5:Manager 



Memory Coherence Algorithms 

• Dynamic Distributed Manager 
• Merge Manager into Ptable 

• Ptable entry probably knows the owner.  
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CPU Ptable 

probOwner 

copyset 

access 

CPU1 

CPU2 

N/A 

NIL 

CPU2 

CPU3 

N/A 

NIL 

CPU3 

Self 

{CPU3} 

Write 

1: Read Fault Request 2: Forward Request 

2: Send Page 

CPU1 

CPU3 

N/A 

Read 

CPU2 

CPU1 

N/A 

NIL 

CPU3 

Self 

{CPU1, CPU3} 

Read 



Memory Coherence Algorithms 

• Can a request always find the true owner? 

 

• Theorem 1 
• A page fault on any processor reaches the true owner of the page 

using at most N-1 forwarding requests. 
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Memory Coherence Algorithms 

P0 P1 

P3 

P2 

P4 

• a glance at the proof 
• probOwner graph Gp: processors point to their probOwner 

• Gp is directed and acyclic (rooted tree) after initialization. 
• All processors point to the true owner. 

• The graph modified by any requests is still a rooted tree. 

 

 

• Maximum path length of a tree: N-1 
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P0 

P1 

P2 P3 

P4 

P0 

P1 

P2 P3 

P4 

P0 

P1 

P2 P3 

P4 

1: P3 send request 2: P1 changes probOwner and forward request 3: P0 changes probOwner and send page to P3 4: ProbOwner Graph after a request 



Experiments 

• Speedup: time on single proc divided by time on SVM system 

• Four Parallel Computing Programs 
• 3D PDE 

• Parallel Sort 

• Matrix Multiplication 

• Dot Product 

• Comparison of Coherence Algorithms 
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3D-PDE 

• Solving a Linear Equation 
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CPU1 

CPU2 



3D-PDE 
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Solid: experiment 

Dashed: Ideal 

Superlinear speedup? 



Superlinear Speedup 

 

 

 

 

 
• Number of disk pages remains high in single-processor case. 

• Number of disk pages quickly decreases as starting execution. 

 

 

 

 

 
• Reducing data size results in sublinear speedup. 
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Solid: experiment 

Dashed: Ideal 

Solid: single processor 

Dashed: processor w/ init data in two-processor system 

Dotted: processor w/o init data in two-processor system 

Conclusion: 

1. In single-processor case, system suffers from thrashing. 

2. The working sets do not fit into one processor’s memory while they fit into two processors’ memory. 



3D-PDE 
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• More physical memories reduces thrashing. 

• Program exhibits a high degree of locality. 

1 1

2 2

A b
x

A b

   
   

   


