SERVICES PROVIDED BY OS

MS. RASHMI CHAUDHARY AP

CSE DEPARTMENT

Operating System

- Is a program that controls the execution of application programs
 - OS must relinquish control to user programs and regain it safely and efficiently
 - Tells the CPU when to execute other pgms
- Is an interface between the user and hardware
- Masks the details of the hardware to application programs
 - Hence OS must deal with hardware details

Services Provided by the Os

- Facilities for Program creation
 - editors, compilers, linkers, and debuggers
- Program execution
 - ▶ loading in memory, I/O and file initialization
- Access to I/O and files
 - deals with the specifics of I/O and file formats
- System access
 - Protection in access to resources and data
 - Resolves conflicts for resource contention

Services Provided by the OS

- Error Detection
 - internal and external hardware errors
 - memory error
 - device failure
 - software errors
 - arithmetic overflow
 - access forbidden memory locations
 - Inability of OS to grant request of application

- Error Response
 - simply report error to the application
 - Retry the operation
 - Abort the application

Services Provided by the OS

- Accounting
 - collect statistics on resource usage
 - monitor performance (eg: response time)
 - used for system parameter tuning to improve performance
 - useful for anticipating future enhancements
 - used for billing users (on multiuser systems)

Major Achievements of OS

- ► To meet the difficult requirements of multiprogramming and time sharing, there have been 5 major achievements by OS:
 - Processes
 - Memory management
 - Information protection and security
 - Scheduling and resource management
 - System structure

- Introduced to obtain a systematic way of monitoring and controlling pgm execution
- A process is an executable program with:
 - associated data (variables, buffers...)
 - execution context: ie. all the information that
 - the CPU needs to execute the process
 - content of the processor registers
 - ▶ the OS needs to manage the process:
 - priority of the process
 - the event (if any) after which the process is waiting
 - other data (that we will introduce later)

A simple implementation of

- register contains the index into the process list of the currently executing process (B)
- A process switch from B to A consist of storing (in memory) B's context and loading (in CPU registers) A's context
- A data structure that provides flexibility (to add new features)

Memory Management

- ▶ The key contribution is virtual memory
- ▶ It allows programs to address memory from a logical point of view without regard to the amount that is physically available
- While a program is running only a portion of the program and data is kept in (real) memory
- Other portions are kept in blocks on disk
 - the user has access to a memory space that is larger than real memory

Virtual Memory

- All memory references made by a program are to virtual memory which can be either
 - a linear address space
 - a collection of segments (variable-length blocks)
- The hardware (mapper) must map virtual memory address to real memory address
- If a reference is made to a virtual address not in memory, then
 - ▶ (1) a portion of the content of real memory is swapped out to disk
 - (2) the desired block of data is swapped in

File System

- Implements long-term store (often on disk)
- Information stored in named objects called files
 - a convenient unit of access and protection for OS
- Files (and portions) may be copied into virtual memory for manipulation by programs

Security and Protection

- Access control to resources
 - forbid intruders (unauthorized users) to enter the system
 - forbid user processes to access resources which they are not authorized to

Characteristics of Modern Operating Systems duced recently

- In response to new hardware development
 - multiprocessor machines
 - high-speed networks
 - faster processors and larger memory
- In response to new software needs
 - multimedia applications
 - Internet and Web access
 - Client/Server applications

- Only a few essential functions in the kernel
 - primitive memory management (address space)
 - Interprocess communication (IPC)
 - basic scheduling
- Other OS services are provided by processes running in user mode (servers)
 - device drivers, file system, virtual memory...
- More flexibility, extensibility, portability...
- A performance penalty by replacing service calls with message exchanges between process...

Multithreading

- A process is a collection of one or more threads that can run simultaneously
- Useful when the application consists of several tasks that do not need to be serialized
- Gives the programmer a greater control over the timing of application-related events
- All threads within the same process share the same data and resources and a part of the process's execution context
- ▶ It is easier to create or destroy a thread or switch among threads (of the same process) than to do these with processes

Symmetric Multiprocessing (SMP)

- A computer with multiple processors
- Each processor can perform the same functions and share same main memory and I/O facilities (symmetric)
- ► The OS schedule processes/threads across all the processors (real parallelisme)
- Existence of multiple processors is transparent to the user.
- Incremental growth: just add another CPU!
- Robustness: a single CPU failure does not halt the system, only the performance is reduced.