
Operating system

Mahesh Malkani

A.P in CSE Deptt.

Memory Management

Memory Management

 Load time: Must generate relocatable code if memory location is not known

at compile time.

 Execution time: Binding delayed until run time if the process can be moved

during its execution from one memory segment to another. Need hardware

support for address maps (e.g., relocation registers).

• Logical Versus Physical Address Space

 The concept of a logical address space that is bound to a separate

physical address space is central to proper memory management.

 Logical address – address generated by the CPU; also referred to

as virtual address.

 Physical address – address seen by the memory unit.

 The set of all logical addresses generated by a program is a logical

address space; the set of all physical addresses corresponding to

these logical addresses are a physical address space.

 Logical and physical addresses are the same in compile-time and load-time

address-binding schemes; logical (virtual) and physical addresses differ in

execution-time address-binding scheme.

 The run-time mapping from virtual to physical addresses is done by a

hardware device called the memory management unit (MMU).

 This method requires hardware support slightly different from

the hardware configuration.

 The base register is now called a relocation register. The value in

the relocation register is added to every address generated by a

user process at the time it is sent to memory.

 The user program never sees the real physical addresses. The

program can create a pointer to location 346, store it in memory,

manipulate it and compare it to other addresses.

 The user program deals with logical addresses. The memory

mapping hardware converts logical addresses into physical

addresses.

 The final location of a referenced memory address is not

determined until the reference is made.

Dynamic Loading

 Routine is not loaded until it is called.

 All routines are kept on disk in a relocatable load format.

 The main program is loaded into memory and is executed.

 When a routine needs to call another routine, the calling routine

first checks to see whether the other the desired routine into

memory and to update the program‘s address tables to reflect
this change.

 Then control is passed to the newly loaded routine.

 Better memory-space utilization; unused routine is never

loaded.

 Useful when large amounts of code are needed to handle

infrequently occurring cases.

 No special support from the operating system is required.

 Implemented through program design.

Dynamic Linking

 Linking is postponed until execution time.

 Small piece of code, stub, is used to locate the appropriate

memory-resident library routine, or to load the library if the

routine is not already present.

 When this stub is executed, it checks to see whether the needed

routine is already in memory. If not, the program loads the

routine into memory.

 Stub replaces itself with the address of the routine, and executes

the routine.

 Thus the next time that code segment is reached, the library

routine is executed directly, incurring no cost for dynamic linking.

 Operating system is needed to check if routine is in processes‘
memory address.

 Dynamic linking is particularly useful for libraries.

Swapping
• A process can be swapped temporarily out of memory to a

backing store, and then brought back into memory for continued

execution.

• For example, assume a multiprogramming environment with a

round robin CPU scheduling algorithm.

• When a quantum expires, the memory manager will start to swap

out the process that just finished, and to swap in another process

to the memory space that has been freed.

• In the mean time, the CPU scheduler will allocate a time slice to

some other process in memory.

• When each process finished its quantum, it will be swapped with

another process.

• Ideally, the memory manager can swap processes fast enough that

some processes will be in memory, ready to execute, when the

CPU scheduler wants to reschedule the CPU. The quantum must

also be sufficiently large that reasonable amounts of computing

are done between swaps.

• Roll out, roll in – swapping variant used for priority-based

scheduling algorithms.

• If a higher priority process arrives and wants service, the memory

manager can swap out the lower priority process so that it can load

and execute lower priority process can be swapped back in and

continued.

• This variant is some times called roll out, roll in. Normally a process

that is swapped out will be swapped back into the same memory

space that it occupied previously.

• This restriction is dictated by the process cannot be moved to

different locations. If execution time binding is being used, then a

process can be swapped into a different memory space, because

the physical addresses are computed during execution time.

• Backing store – fast disk large enough to accommodate copies

of all memory images for all users; must provide direct access to

these memory images.

• It must be large enough to accommodate copies of all memory

images for all users, and it must provide direct access to these

memory images.

• The system maintains a ready queue consisting of all processes

whose memory images are scheduler decides to execute a

process it calls the dispatcher.

• The dispatcher checks to see whether the next process in the

queue is in memory. If not, and there is no free memory region,

the dispatcher swaps out a process currently in memory and

swaps in the desired process.

• It then reloads registers as normal and transfers control to the

selected process.

 Major part of swap time is transfer time; total transfer time is

directly proportional to the amount of memory swapped.

 Modified versions of swapping are found on many systems (i.e.,

UNIX, Linux, and Windows).

Contiguous Memory Allocation

  Main memory is usually divided into two partitions:

 o Resident operating system, usually held in low memory with

interrupt vector.

 User processes, held in high memory.

 In contiguous memory allocation, each process is contained in

a single contiguous section of memory.

 Single-partition allocation

 Relocation-register scheme used to protect user processes

from each other, and from changing operating-system code

and data.

• Relocation register contains value of smallest physical

address; limit register contains range of logical addresses –

each logical address must be less than the limit register

Multiple-partition allocation

 • Hole – block of available memory; holes of various size are

scattered throughout memory.

• When a process arrives, it is allocated memory from a hole large

enough to accommodate it.

• Operating system maintains information about: a) allocated

partitions b) free partitions (hole)

• A set of holes of various sizes, is scattered throughout memory at

any given time. When a process arrives and needs memory, the

system searches this set for a hole that is large enough for this

process. If the hole is too large, it is split into two: one part is

allocated to the arriving process; the other is returned to the set

of holes. When a process terminates, it releases its block of

memory, which is then placed back in the set of holes. If the new

hold is adjacent to other holes, these adjacent holes are merged

to form one larger hole.

 This procedure is a particular instance of the general dynamic

storage allocation problem, which is how to satisfy a request of

size n from a list of free holes.

 There are many solutions to this problem. The set of holes is

searched to determine which hole is best to allocate.

 The first-fit, best-fit and worst-fit strategies are the most

common ones used to select a free hole from the set of available

holes.

First-fit: Allocate the first hole that is big

enough.

 Best-fit: Allocate the smallest hole that is big

enough; must search entire list, unless ordered

by size.

 Worst-fit: Allocate the largest hole; must also

search entire list.

