Queues

Data Structures



Queue

Like a stack, a queue 1s also a list. However,
with a queue, nsertion 1s done at one end,
while deletion 1s performed at the other end.

Accessing the elements of queues follows a
First In, First Out (FIFO) order.

— Like customers standing in a check-out line 1n a

store, the first customer 1n 1s the first customer
served.



The Queue

Another form of restricted list

— Insertion 1s done at one end, whereas deletion 1s
performed at the other end

Basic operations:
— enqueue: insert an element at the rear of the list

— dequeue: delete the element at the front of the

dequeue enqueue




Implementation of Queue

Just as stacks can be implemented as arrays
or linked lists, so with queues.

Dynamic queues have the same advantages
over static queues as dynamic stacks have
over static stacks



Empty or Full?
Empty queue
— back = front - 1
Full queue?
— the same!
— Reason: n values to represent n+1 states
Solutions

— Use a boolean variable to say explicitly whether the
queue 1s empty or not

— Make the array of size n+1 and only allow n elements to
be stored

— Use a counter of the number of elements in the queue




Queue Class

Attributes of Queue
— front/rear: front/rear index
— counter: number of elements in the queue
— maxSize: capacity of the queue
— values: point to an array which stores elements of the queue

Operations of Queue
— IsEmpty: return true if queue is empty, return false otherwise
— IsFull: return true if queue is full, return false otherwise
— Enqueue: add an element to the rear of queue
— Dequeue: delete the element at the front of queue

— DisplayQueue: print all the data



Create Queue

Queue (1nt size = 10)
— Allocate a queue array of size. By default, size = 10.
— front is set to 0, pointing to the first element of the array
— rear is set to —1. The queue is empty initially.

Queue: :Queue (int size /* = 10 */) {
values = new double[size];
maxSize = size;
front = 0;
rear - -1;

counter = 0;



Queue overflow

The condition resulting from trying to add
an element onto a full queue.

if(!q.IsFull())
g.Enqueue(item);



Queue underflow

The condition resulting from trying to
remove an element from an empty queue.

If('q.IsEmpty())
g.Dequeue(item);



