
Queues

Data Structures



Queue
• Like a stack, a queue is also a list. However, 

with a queue, insertion is done at one end, 
while deletion is performed at the other end.

• Accessing the elements of queues follows a 
First In, First Out (FIFO) order.
– Like customers standing in a check-out line in a 

store, the first customer in is the first customer 
served.



The Queue

• Another form of restricted list
– Insertion is done at one end, whereas deletion is 

performed at the other end
• Basic operations:

– enqueue: insert an element at the rear of the list
– dequeue: delete the element at the front of the 

list



Implementation of Queue

• Just as stacks can be implemented as arrays 
or linked lists, so with queues.

• Dynamic queues have the same advantages 
over static queues as dynamic stacks have 
over static stacks



Empty or Full?
• Empty queue

– back = front - 1
• Full queue?

– the same!
– Reason: n values to represent n+1 states

• Solutions
– Use a boolean variable to say explicitly whether the 

queue is empty or not
– Make the array of size n+1 and only allow n elements to 

be stored
– Use a counter of the number of elements in the queue



Queue Class
• Attributes of Queue

– front/rear: front/rear index
– counter: number of elements in the queue
– maxSize: capacity of the queue
– values: point to an array which stores elements of the queue

• Operations of Queue
– IsEmpty: return true if queue is empty, return false otherwise
– IsFull: return true if queue is full, return false otherwise
– Enqueue: add an element to the rear of queue
– Dequeue: delete the element at the front of queue
– DisplayQueue: print all the data



Create Queue
• Queue(int size = 10)

– Allocate a queue array of size. By default, size = 10.
– front is set to 0, pointing to the first element of the array
– rear is set to -1. The queue is empty initially.

Queue::Queue(int size /* = 10 */) {

values = new double[size];

maxSize = size;

front = 0;

rear = -1;

counter = 0;

}



Queue overflow

• The condition resulting from trying to add 
an element onto a full queue.

if(!q.IsFull())
q.Enqueue(item);



Queue underflow

• The condition resulting from trying to 
remove an element from an empty queue.

if(!q.IsEmpty())
q.Dequeue(item);


