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Chapter 1 

Basic Pipelining and Simple RISC 

Processors 
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Basic pipelining and simple RISC processors 

 CISC: State-of-the-art computers in 1970s,  e.g. IBM System/370 or  VAX-11/780 

were rack-based machines implemented with discrete logic. 

 VAX-11/780: complex instruction set, microcode, consisting of 304 instructions,  

16 addressing modes, and more than 10 different instruction lengths. 

 Reasons:  

– Hardware technology of the  pre 80ies required minimal hardware and minimal 

memory size. 

– Assembly language programming required high-level constructs at assembly 

language level. 

– Idea of a semantic gap between computer architecture and HLL programs. 

 Conclusions:  

– CISC (complex instruction set computer) ISA (instruction set architecture) 

– HLL (high-level language) machines  
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Instruction  Average 

(% total executions)

load               22

conditional branch 20

compare 16

store              12

add                8

and                6

sub                5

move register-register 4

call               1

return             1

Total              95

The ten most frequently used instructions in the 

SPECint92 for Intel x86 
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RISC movement in processor architecture 

 RISC = reduced instruction set computer 

 Technological prerequisite (end of 70ies): VLSI chips of limited capacity make 

very simple pipelined single-chip processor implementations feasible 

 About 80% of the computations of a typical program required only about 20% of 

the instructions in a processor's instruction set. 

 The most frequently used instructions were simple instructions such as load, 

store and add. 

 Cooperation between a well-chosen set of simple instructions implemented 

directly in hardware and an optimizing compiler. 

 Having a small number of instructions can be traced back to 1964, when the 

Control Data Corporation CDC 6600 used a small (64 opcodes) load/store and 

register-register instruction set, 

 mid 1970s, when researchers at IBM developed the IBM 801 

 End of 70ies: Patterson’s team at University of California at Berkeley (RISC I)  and 
Hennessy's team of Stanford University (MIPS) survey RISC processors. 
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Instruction Set Architecture (ISA) 

 The programmers view of the machine depends on the answers to the following 

five questions: 

 

– How is data represented? 

– Where can data be stored? 

– How can data be accessed? 

– What operations can be done on data? 

– How are instructions encoded? 

 

The answers to these questions define  

the Instruction Set Architecture (ISA) of the machine. 



6 

ISA - Processor architecture - Microarchitecture 

 The instruction set architecture ISA refers to the programmer visible 

instruction set. 

– It defines the boundary between hardware and software. 

 

 Often the ISA is identified with the processor architecture. 

 The processor microarchitecture refers to the internal organization of the 

processor. 

– So, several specific processors with differing microarchitectures may share 

the same architecture, i.e. the same ISA. 
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How is data represented? - Data formats 

 The ISA supports several data formats by providing representations for 

integers, characters, floating-point, multimedia, etc.  

 Integer data formats can be signed or unsigned  

(e.g., in DEC Alpha there is byte, 16-bit word, 32-bit longword, and 64-bit 

quadword).  

 There are two ways of ordering byte addresses within a word 

– big-endian: most significant byte first, and  

– little-endian: least significant byte first.  

 There are also packed and unpacked BCD numbers, and ASCII characters. 

 Floating-point data formats (ANSI/IEEE 754-1985): 

standard, basic or extended, each having two widths: single or double. 

 Multimedia data formats are 32-, 64-, and 128-bit words (soon perhaps also 256-

bit) concluding several 8- or 16-bit pixel representations or 32-bit (single 

precision) floating-point numbers used for 3D graphics. 
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Where can data be stored? - Address space 

 Several address spaces are distinguished by the (assembly language) 

programmer, such as register space, stack space, heap space, text space, 

 I/O space, and control space.  

 

 Except for the registers, all other address spaces are mapped onto a single 

contiguous memory address space.  

 

 A RISC ISA additionally contains a register file, which consists of a relatively 

large number of general-purpose CPU registers 

- early RISC processors: MIPS:  32 32-bit general purpose registers, 

RISC I: register windowing 

 

 Contemporary RISC processors: additionally 32  64-bit floating-point and 

multimedia registers. 
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How can data be accessed? - Addressing modes 

 Register mode: the operand is stored in one of the registers. 

 Immediate (or literal) mode: the operand is a part of the instruction. 

 Direct (or absolute) mode: the address of the operand in memory is stored in 
the instruction. 

 Register indirect (or register deferred) mode: the address of the operand in 
memory is stored in one of the registers. 

 Autoincrement  (or register indirect with postincrement) mode: like the register 
indirect, except that the content of the register is incremented after the use of 
the address.  

– This mode offers automatic address increment useful in loops and in 
accessing byte, half-word, or word arrays of operands. 

 Autodecrement (register indirect with predecrement) mode: the content of the 
register is decremented and is then used as a register indirect address.  

– This mode can be used to scan an array in the direction of decreasing 
indices. 
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Addressing modes (continued) 
 Displacement  (also register indirect with displacement or based) mode:  

the effective address of the operand is the sum of the contents of a register and 
a value, called displacement, specified in the instruction. 

 Indexed and scaled indexed mode: works essentially as the register indirect.  

– The register containing the address is called index register.  

– The main difference between the register indirect and the indexed is that 
the contents of the index register can be scaled by a scale factor (e.g. 1, 2, 
4, 8 or 16).  

– The availability of the scale factor, along with the index register, permits 
scanning of data structures of any size, at any desired step. 

 Indirect scaled indexed mode: the effective address is the sum of the contents 
of the register and the scaled contents of the index register. 

 Indirect scaled indexed with displacement mode: essentially as the indirect 
scaled indexed, except that a displacement is added to form the effective 
address.  

 PC-relative mode: a displacement is added to the PC.  

– The PC-relative mode is often used with branches and jumps. 
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Addressing  

modes 

Addressing mode   Example instruction / Meaning 

Register    load Reg1,Reg2              

            Reg1 ¬ (Reg2)   

Immediate   load Reg1,#const           

            Reg1 ¬ const    

Direct      load Reg1,(const)           

            Reg1 ¬ Mem[const]

Register    load Reg1,(Reg2)            

indirect    Reg1 ¬ Mem[(Reg2)]

Autoincrement  load Reg1,(Reg2)+

               Reg1 ¬ Mem[(Reg2)], Reg2 ¬ (Reg2) + step

Autodecrement  load Reg1,-(Reg2)        

               Reg2 ¬ (Reg2) - step, Reg1 ¬ Mem[(Reg2)]

Displacement   load Reg1,displ(Reg2)    

               Reg1 ¬ Mem[displ + (Reg2)]  

Indexed and      load Reg1,(Reg2*scale)    

scaled indexed   Reg1 ¬ Mem[(Reg2)*scale] 

Indirect         load Reg1,(Reg2,Reg3*scale) 

scaled indexed   Reg1 ¬ Mem[(Reg2) + (Reg3)*scale] 

Indirect scaled indexed  load Reg1,displ(Reg2,Reg3*scale) 

with displacement        Reg1 ¬ Mem[displ + (Reg2) + (Reg3)*scale]

PC-relative      branch displ

                 PC ¬ PC + step + displ (if branch taken)

const,displ  ... decimal, hexadecimal, octal or binary numbers

       step  ... e.g., 4 in systems with 4-byte uniform  instruction size

      scale  ... scaling factor, e.g., 1, 2, 4, 8, 16 
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RISC addressing modes 

 RISC ISAs have a small number of addressing modes, usually not exceeding 

four. 

 

 Displacement mode already includes:  

– the direct mode (by setting the register content to zero),  

– and the register indirect mode (by setting the displacement to zero). 
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What operations can be done on data? 

- Instruction set 

 Data movement instructions: transfer data from one location to another. 

– When there is a separate I/O address space, these instructions also include 
special I/O instructions.  

– Stack manipulation instructions (e.g. push, pop) also fall into this category. 

 Integer arithmetic and logical instructions: can be one-operand (e.g. 
complement), two-operand or three-operand instructions. 

– In some processors, different instructions are used for different data 
formats of their operands.  
There may be separate signed and unsigned multiply/divide instructions. 

 Shift and rotate instructions: left or right shifts and rotations.  

– There are two types of shifts: logical and arithmetic. 

 Bit manipulation instructions: operate on specified fields of bits. The field is 
specified by its width and offset from the beginning of the word. Instructions 
usually include test (affecting certain flags), set, clear, and possibly others. 
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Instruction set (continued) 

 Multimedia instructions:  

– Process multiple sets of 

small operands and obtain 

multiple results by a 

single instruction 

– Utilization of subword 

parallelism (data parallel 

instructions, SIMD) 

– Saturation arithmetic 

– Additional arithmetic, 

masking and selection, 

reordering and conversion 

instructions 
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Instruction set (continued) 

 Floating-point instructions: floating-point data movement, arithmetic, 
comparison, square root, absolute value, transcendental functions, and others.  

 Control transfer instructions: consist primarily of jumps, branches, procedure 
calls, and procedure returns. We assume that jumps are unconditional and 
branches are conditional. Some systems may also have return from exception 
instructions. 

 System control instructions: allow the user to influence directly the operation 
of the processor and other parts of the computer system. 

 Special function unit instructions: perform particular operations on special 
function units (e.g. graphic units). 
Another type of special instructions are atomic instructions for controlling the 
access to critical sections in multiprocessors. 
 

 Depending on the way of specifying its operands an instruction can be one of 
the following types:  

– register-register, memory-register, register-memory, or memory-memory. 
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RISC ISA 

 In a RISC ISA, all operations, except load and store are register-register 

instructions (an ISA of this type is called a load/store ISA). 

 

 Similarly to addressing modes, also the number of instructions is reduced in 

RISC ISA (e.g. up to 128). 
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How are instructions encoded?  

- Instruction and addressing formats 

– 3-address instruction format: opcode | Dest | Src1 | Scr2;  
typically used by register-register (also called load/store) machines. 

– 2-address instruction format: opcode | Dest/Src1 | Src2 ;  
often supported register-memory machines. 

– 1-address instruction format: opcode | Src; 
supported by the accumulator machine. 

– 0-address instruction format: only opcode; 
supported by the stack machine. 
 

 Most RISC ISAs use a 3-address instruction format where all instructions have 
a fixed length of 32 bits.  

 CISC ISAs often use register-memory with variable instruction lengths.  

 Accumulator machines are today mostly found in microcontrollers. 

 Also stack machines use variable instruction lengths, today exemplified in 
JAVA processors. 
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Register-Register     Register-Memory  Accumulator  Stack

load Reg1,A           load Reg1,A      load A       push B 

load Reg2,B           add Reg1,B       add B        push A

add Reg3,Reg1,Reg2    store C,Reg1     store C      add    

store C,Reg3          load Reg1,C      load C       pop C  

load Reg1,C           sub Reg1,B       sub B        push B 

load Reg2,B           store D,Reg1     store D      push C 

sub Reg3,Reg1,Reg2                                  sub    

store D,Reg3                                        pop D  

Machine

 C = A + B 

 D = C - B  

      coded in four classes of ISA instruction formats: 

Examples 
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Examples of 

RISC ISAs: 

MIPS II 

Data      byte, 16-bit halfword, 32-bit word, 64-bit doubleword  

formats   big- or little-endian, ANSI/IEEE 754-1985    

          Integer (CPU) registers (64- or 32-bit):      

              32 registers r0 to r31, program counter PC, two multiply and divide 

              registers HI (remainder for divide) and LO (quotient for divide); r0 is 

Register      hardwired to a zero, r31 is the link register for jumps and link instructions.

file      Floating-point (FPU) registers:                                     

     32 floating-point registers FGR0 to FGR31; can be configured as 16

              64-bit registers;  32-bit implementation/revision register FCR0 with 

              implementation and revision number of the FPU,                

              32-bit control/status register FCR31.                   

Addressing   register, immediate, register indirect, displacement, 

modes        PC-relative               

Instruction  load/store (24), computational (51), jump and branch (22), special (2),

set (163)    exception (16), floating point (30), coprocessor (9), memory management (9)

            

 register-register, 3-address format

 Immediate (I-types):                             

                 6-bit opcode, 5-bit src register specifier,     

                 5-bit dst register specifier or branch condition, 

                 16-bit immediate value or branch displacement.    

Instruction  Jump (J-types):                                  

formats          6-bit opcode, 26-bit jump target address.      

             Register (R-type):                               

                 6-bit opcode, 5-bit src register specifier,    

                 5-bit src register specifier, 5-bit dst register specifier,

                 5-bit shift amount, 6-bit function field  
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Examples of 

RISC ISAs: 

DEC Alpha 

Data      byte, 16-bit word, 32-bit longword, 64-bit quadword  

formats   little-endian, ANSI/IEEE 754-1985, VAX floating-point     

          Integer registers:

              32 64-bit registers R0 to R31, program counter PC, 

              R30 is designated as a stack pointer (SP),            

Register      R31 is always equal to zero (hardwired to a zero value). 

file      Floating-point registers:                                     

              32 64-bit floating-point registers F0 to F31,   

              F31 is always equal to zero (hardwired to a zero value).

Addressing   register, immediate, displacement, 

modes        PC-relative               

             integer load/store (12), integer control (14), integer arithmetic (20), 

Instruction  logical and shift (17), byte manipulation (24),                    

set (155)    floating-point load/store (8), floating-point control (6),       

             floating-point operate (47), miscellaneous (7)                  

            

 register-register, 3-address format

 Memory instructions:                                    

                 6-bit opcode, 5-bit src register specifier,           

                 5-bit src register specifier, 16-bit memory dst field,

                 or function field (for miscellaneous instruction).    

             Conditional branch instructions:                        

                 6-bit opcode, 5-bit branch condition,                 

                 21-bit branch displacement.                           

Instruction  Operate instructions:                                   

formats          6-bit opcode, 5-bit src register specifier,           

                 5-bit src register specifier + 3-bit should be zero (if 12th bit is 0), 

                 or 8-bit literal (if 12th bit is 1),                   

                 7-bit function field, 5-bit dst register specifier.    

             Floating-point operate instructions:                     

                 6-bit opcode, 5-bit src floating-point register specifier, 

                 5-bit src floating-point specifier, 11-bit function field, 

                 5-bit dst floating-point register destination.               

             PALcode instructions:                                   

                6-bit opcode, 26-bit Privileged Architecture Library code. 
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Basic RISC design principles 

 Hardwired control, no microcode 

 Simple instructions and few addressing modes 

– The ISA is designed so that most instructions remain only a single cycle in 

each pipeline stage: 

CPI (cycles per instruction) = IPC (Instructions per cycle) = 1 

 Register-register (or load/store) design 

 Deep pipelining 

 Reliance on optimizing compilers 

 High-performance memory hierarchy 
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Datapath organization of a simple RISC processor 

Main Memory 

Pipeline 

Decode & 

Control ALU 

D: Data Lines 

PC: Program Counter 

A: Address Lines 

I-cache D-cache 

D D A A 

Instruction 

Fetch 

PC 

MMU MMU 

Register 

File 

Result Bus 

Operand Bus B 

Operand Bus A 
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Pipelining definitions 

 Pipelining is an implementation technique whereby multiple instructions are 

overlapped in execution. It is not visible to  the programmer! 

 

 Each step is called a pipe stage or  pipe segment. 

 

 Pipeline machine cycle: time required to move an instruction one step down 

the pipeline. 

 

 Throughput of an pipeline: number of instructions that can leave the pipeline 

each cycle. 

 

 Latency is the time needed for an instruction to pass through all pipeline 

stages. 
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Speedup assumptions 

 n instructions execute in n*k cycles on a hypothetical non-pipelined processor 

with k stages, 

 

 the execution of n instructions on a k-stage pipeline will take k+n-1 cycles, 

assuming ideal conditions with latency k cycles and throughput 1.  

 

 

           Speedup =  n*k / (k+n-1) = k / (k/n + 1 - 1/n) 

 

           Ideal speedup (n  infinite) =  k 
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The base pipeline is the most simple DLX RISC 

pipeline 

ID       -- Instruction Decode/Register Fetch 

EX     -- Execute/Address Calculation 
IF 

MEM  -- Memory Access 

ID 

WB     -- Write Back 

EX MEM WB 

IF        -- Instruction Fetch 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

IF ID EX MEM WB 

5-Deep 

Current CPU Cycle 

Master 
Clock  
Cycle 
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Basic pipeline steps 

 Instruction fetch (IF):  the instruction pointed to by the PC is fetched from 
memory into the instruction register of the CPU, and the PC is incremented to 
point to the next instruction in the memory. 

 Instruction decode/register fetch (ID): the instruction is decoded, and in the 
second half of the stage the operands are transferred from the register file into 
the ALU input registers (here meaning: latches). 

 Execution/effective address calculation (EX): the ALU operates on the 
operands from ALU input registers and eventually puts the result into ALU 
output register. The contents of this register depend on the type of instruction. 
If the instruction is: 

– register-register (e.g. arithmetic/logical): the ALU outputs the result of the 
operation into the ALU output register; 

– memory reference (e.g. load/store), the ALU output register contains an 
effective memory address; 

– control transfer (e.g. branch on equal), then the ALU produces the jump / 
branch target address (which is stored in the ALU output register) and, at 
the same time, the branch direction. 
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Basic Pipeline Steps (continued) 

 Memory access/branch completion (MEM): only for load, store, and branch 
instructions. If the instruction is: 

– register-register: the content of the ALU output register is transferred to the 
ALU result register.  

– load: the data is read from memory (as pointed to by the ALU output 
register) and is placed in the load memory data register; 

– store: the data in the store value register is written into the D-cache (as 
pointed to by the ALU output register); 

– control transfer: for jump and branch that is taken: the PC is replaced by 
the ALU output register content; otherwise, the PC remains unchanged (in 
both cases, the next step WB is skipped); 

 

 Write back (WB): the result of the instruction  execution (register-register or 
load instruction) is stored into the register file in the first half of the phase.  
In particular,  the load memory data register or the ALU result register is written 
into the register file. 
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Pipeline (1) 
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Pipeline (2) 
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Pipeline (3) 
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Pipeline (4) 
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Pipeline (Overview) 
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Discussion 

 The cycle time of the pipeline is dictated by the critical path: the slowest 

pipeline stage. 

 All stages use different CPU resources (no resource conflicts are possible in 

our simple but well-balanced pipeline!). 

 Ideally, each cycle another instruction is fetched, decoded, executed, etc. 

(CPI=1).  

 Pipeline hazards: phenomena that disrupt the smooth execution of a pipeline. 

 Example:  

– If we assume a unified cache with a single read port (instead of separate I- 

and D-caches)   a memory read conflict appears among IF and MEM 

stages.  

– The pipeline has to stall one of the accesses until the required memory port 

is available.  

 A stall is also called a pipeline bubble. 
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Pipelining hazards and solutions 

- Three types of pipeline hazards 

 Data hazards arise because of the unavailability of an operand  

– For example, an instruction may require an operand that will be the result 
of a preceding, still uncompleted instruction. 

 Structural hazards may arise from some combinations of instructions that 
cannot be accommodated because of resource conflicts 

– For example, if processor has only one register file write port and two 
instructions want to write in the register file at the same time. 

 Control hazards arise from branch, jump, and other control flow instructions  

– For example, a taken branch interrupts the flow of instructions into the 
pipeline  
 the branch target must be fetched before the pipeline can resume 
execution. 
 

 Common solution is to stall the pipeline until the hazard is resolved, inserting 
one or more “bubbles” in the pipeline. 
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Dependences 

 Assume: Inst1 is followed by Instr2. 

 

 Instr2  is (true) data dependent on Inst1, if  Inst1 writes its output in a register 

Reg (or memory location) that Instr2  reads as its input. 

 Instr2  is antidependent Inst1  if Inst1  reads data from a register Reg (or memory 

location) which is subsequently overwritten by Instr2. 

 Instr2  is output dependent Inst1  if both write in the same register Reg (or 

memory location) and Instr2 writes its output after Inst1. 

 Instr2  control dependent Inst1  if Inst1 must complete before a decision can be 

made whether or not to execute Instr2. 

 

 A data dependence is sometimes also called true or real data dependence, 

while anti- and output dependences are sometimes called  false or name 

dependences. 
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Data Hazards 

 Dependences between instructions may cause data hazards  

when Instr1 and Instr2  are so close that their overlapping within the pipeline would 

change their access order to Reg. 

 

 Three types of data hazards: 

 

 Read After Write (RAW): Instr2  tries to read operand before Instr1  writes it. 

  

 Write After Read (WAR): Instr2  tries to write operand before Inst1  reads it. 

  

 Write After Write (WAW): Instr2  tries to write operand before Instr1  writes it. 
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IF ID EX MEM 

load Reg1,A 

load Reg2,B 

add Reg2,Reg1,Reg2 

mul Reg1,Reg2,Reg1 

IF ID EX MEM 

IF ID EX MEM 

IF ID EX MEM WB 

WB 

WB 

WB 

time cycle time 

Data hazards in an instruction pipeline 
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WAR and WAW: can they happen in our pipeline? 

 WAR and WAW can’t happen in DLX 5 stage pipeline because: 
–  All instructions take 5 stages,  

–  Register reads are always in stage 2, and  

–  Register writes are always in stage 5. 

 

 WAR and WAW may happen in more complicated pipes. 
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add Reg2,Reg1,Reg2 

mul Reg1,Reg2,Reg1 

IF ID EX MEM 

IF ID EX MEM WB 

WB 

time cycle time 

Reg2 old Reg2 new 

wrong register read! 

Pipeline conflict due to a data hazard 
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Solutions for data hazards from true data 

dependences 

 Software solution (Compiler scheduling): 

– Putting no-op instructions after each instruction that may cause a hazard 

– Instruction scheduling: rearrange code to reduce no-ops 
 

 Hardware solutions: detect hazard!! Hazard detection logic necessary! 

– Interlocking: stall pipeline for one or more cycles 

– Forwarding:  In our pipeline two types of forwarding: 

• the result in ALU output of Instr1 in EX stage can immediately be 
forwarded back to ALU input of EX stage as an operand for Instr2, 

• the load memory data register from MEM stage can be forwarded to 
ALU input of EX stage. 

– Forwarding with interlocking: Assuming that Instr2 is data dependent on 
the load instruction Instr1 then Instr2  has to be stalled  until the data loaded 
by Instr1 becomes available in the load memory data register in MEM stage.  
Even when forwarding is implemented from MEM back to EX, one bubble 
occurs that cannot be removed. 
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add Reg2,Reg1,Reg2 

mul Reg1,Reg2,Reg1 

IF ID EX MEM 

IF ID EX MEM WB 

WB 

time 

Register Reg2 

bubbles 

Data hazard: Hardware solution by interlocking 
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add Reg2,Reg1,Reg2 

mul Reg1,Reg2,Reg1 

IF ID EX MEM 

IF ID EX MEM WB 

WB 

time 

Data hazard: Hardware solution by forwarding 
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load Reg2,B 

add Reg2,Reg1,Reg2 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 

not possible! 

time cycle time 

Pipeline hazard due to data dependence  

unresolvable by forwarding 



44 

load Reg2,B 

add Reg2,Reg1,Reg2 

IF ID EX MEM 

IF ID EX MEM 

WB 

WB 

time 
bubble 

Unremovable pipeline bubble due to data 

dependence 
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Structural Hazards 

 Problem (resource conflict): Structural hazards do not arise in our simple 
pipeline.  
 

 However, assume: the pipeline would be able to write back results of register-
register instructions already in MEM stage (and not in WB stage): 

– MEM stage would be able to write back an ALU output in case of a register-
register instruction (from ALU output register) into a single-write-port 
register file.  

– Consider a sequence of two instructions, Instr1 and Instr2, with Instr1 
fetched before Instr2, and assume that Instr1 is a load, while Instr2 is a data 
independent register-register instruction.  

– Due to memory addressing, the data loaded by Instr1 arrives at the register 
file write port at the same time as the result of Instr2, causing a resource 
conflict. 
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load Reg2,A 

mul Reg3,Reg4,Reg5 

IF ID EX 
MEM 

IF ID EX 
MEM 

WB 

WB 

time cycle time 

Register file 

WB 

WB 

Pipeline bubble due to a structural hazard 
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Solutions to the structural hazard 

 Arbitration with interlocking:  hardware that performs resource conflict 

arbitration and interlocks one of the competing instructions 

 

 Resource replication: In the example a  register file with multiple write ports 

would enable simultaneous writes. 

 

– However, now output dependences may arise!  

– Therefore additional arbitration and interlocking necessary 

– or the first (in program flow) value is discarded and the second used. 



48 

Control Hazards, delayed branch technique, 

and static branch prediction 

 Problem (control conflicts). Control hazards can be caused by jumps and by 
branches. 
 

 Assume Inst1 is a branch instruction.  

 

 The branch direction and the branch target address are both computed in EX 
stage (the branch target address replaces the PC in the MEM stage). 

 

 If the branch is taken, the correct instruction sequence can be started with a 
delay of three cycles since three instructions of the wrong branch path are 
already loaded in different stages of the pipeline. 
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branch 

instruction 

branch target 

instruction  

IF ID EX MEM 

IF ID EX MEM WB 

WB 

time 

PC 

three bubbles 

Bubbles after a taken branch 
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Solution: Decide branch direction earlier 

 Calculation of the branch direction and of the branch target address should 

be done in the pipeline as early as possible.  

 

 Best solution: Already in ID stage after the instruction has become 

recognized as branch instruction. 
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Solution: Calculation of the branch direction and of 

the branch target address in ID stage  

 However, then the ALU can no more be used for calculating the branch target 
address  a structural hazard, which can be avoided by an additional ALU for 
the branch target address calculation in ID stage. 

 And a new unremovable pipeline hazard arises:  

– An ALU instruction followed by an (indirect) branch on the result of the 
instruction will incur a data hazard stall even when the result value is 
forwarded from the EX to the ID stage (similar to the data hazard from a 
load with a succeeding ALU operation that needs the loaded value).  

 The main problem with this pipeline reorganization:  
decode, branch target address calculation, and PC write back within a single 
pipeline stage  a critical path in the decode stage that reduces the cycle rate 
of the whole pipeline. 

 Assuming an additional ALU and a write back of the branch target address to 
the PC already in the ID stage, if the branch is taken, only a one cycle delay slot 
arises 
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Software Solution 

 Delayed jump / branch technique: The compiler fills the delay slot(s) with 
instructions that are in logical program order before the branch.  

– The moved instructions within the slots are executed regardless of the 
branch outcome.  

– The probability of: 

• moving one instruction into the delay slot is greater than 60%,  

• moving two instructions is 20%,  

• moving three instructions is less than 10%. 
 

 The delayed branching was a popular technique in the first generations of 
scalar RISC processors, e.g. IBM 801, MIPS, RISC I, SPARC. 

 

 In superscalar processors, the delayed branch technique complicates the 
instruction issue logic and the implementation of precise interrupts.  
However, due to compatibility reasons it is still often in the ISA of some of 
today's microprocessors, as e.g. SPARC- or MIPS-based processors. 
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Hardware solution - Interlocking 

 Interlocking: This is the simplest way to deal with control hazards: the 

hardware must detect the branch and apply hardware interlocking to stall the 

next instruction(s). 

 

For our base pipeline this produces three bubbles in cases of jump or of (taken) 

branch instructions (since branch target address is written back to the PC 

during MEM stage). 
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Static branch prediction 

 The prediction direction for an individual branch remains always the same! 

– the machine cannot dynamically alter the branch prediction (in contrast to 
dynamic branch prediction which is based on previous branch executions).  

 

 So static branch prediction comprises: 

–  machine-fixed prediction (e.g. always predict taken) and  

– compiler-driven prediction.  

 

 If the prediction followed the wrong instruction path, then the wrongly fetched 
instructions must be squashed from the pipeline. 
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Static branch prediction - Machine-fixed 

 Wired taken/not-taken prediction: The static branch prediction can be wired 

into the processor by predicting that all branches will be taken (or all not 

taken).  

 

 Direction based prediction: backward branches are predicted to be taken and 

forward branches are predicted to be not taken  helps for loops. 
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Static branch prediction - Compiler-based 

 Opcode bit in branch instruction allows the compiler to reverse the hardware 

prediction. 

 

 There are two approaches the compiler can use to statically predict which way 

a branch will go:  

– it can examine the program code,  

– or it can use profile information (collected from earlier runs)  
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Hardware solutions: BTAC 

 The BTAC is a set of tuples each of which contains: 

– Field 1: the address of a branch (or jump) instruction (which was executed 
in the past), 

– Field 2: the most recent target address for that branch or jump, 

– Field 3: information that permits a prediction as to whether or not the 
branch will be taken. 

 The BTAC functions as follows:  

– The IF stage compares PC against the addresses of jump and branch 
instructions in BTAC (Field 1).    ----  Suppose a match:  

– If the instruction is a jump, then the target address is used as new PC.  
If the instruction is a branch, a prediction is made based on information 
from BTAC (Field 3) as to whether the branch is to be taken or not. 
If predict taken, the most recent branch target address is read from BTAC 
(Field 2) and used to fetch the target instruction.  

– Of course, a misprediction may occur. Therefore, when the branch 
direction is actually known in the MEM stage, the BTAC can be updated 
with the corrected prediction information and the branch target address. 
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BTAC (continued) 

 To keep the size of BTAC small, only predicted taken branch addresses are 
stored. 

–  Effective with static prediction! 

 

 If the hardware alters the prediction direction due to the history of the branch, 
this kind of branch prediction is called dynamic branch prediction.  

– Now the branch target address (of "taken") is stored also if the prediction 
direction may be "not taken". 

– If the branch target address is removed for branches that are not taken 
 BTAC is better utilized. 

– However branch target address must be newly computed if the prediction 
direction changes to "predict taken“. 
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BTB (Branch target buffer) 

 BTAC can be extended to implement branch folding: not only the branch target 

address is stored but also the target instruction itself and possibly a few of its 

successor instructions. Such a cache is called branch target cache (BTC) or 

branch target buffer (BTB).  

 

 The BTB may have two advantages: 

– The instruction is fetched from the BTB instead of memory  more time 

can be used for searching a match within the BTB; this allows a larger BTB. 

– When the target instruction of the jump (or branch) is in BTB, it is fed into 

the ID stage of the pipeline replacing the jump (or branch) instruction itself.  
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Multiple-cycle operations and out-of-order execution 

 Problem (multi-cycle operations):  

Inst1 and Inst2, with  Inst1  fetched before  Inst2, and assume that  Inst1  is a 

long-running (e.g. floating-point) instruction.  

 

 Impractical solution: to require that all instructions complete their EX stage in 

one clock cycle since that would mean accepting a slow clock.  

 

 Instead, the EX stage might be allowed to last as many cycles as needed to 

complete Inst1. 

 

 This, however, causes a structural hazard in EX stage because the succeeding 

instruction Inst2 cannot use the ALU in the next cycle. 
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Example of a WAW hazard caused by a long-

latency operation and out-of-order completion 

div Reg3,Reg11,Reg12 

mul Reg3,Reg1,Reg2 

IF ID EX ... 

IF ID EX MEM WB 

EX 

time 

Register Reg3 

MEM WB 

several cycles 

later 
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Solutions to the problem of  multiple-cycle operations  
 Interlocking: stall  Inst2  in the pipeline until  Inst1  leaves the EX stage 

  pipeline bubbles, slow down 

 A single pipelined FU: general-purpose FU for all kind of instructions 
  slows down execution of simple operations 

 Multiple FUs: Inst2 may proceed to some other FU and overlap its EX stage with 
the EX stage of Inst1 

–  out-of-order execution! 

– instructions complete out of the original program order 

– WAW hazard caused by output dependence may occur 
  delaying write back of second operation solves WAW hazard 
  further solutions: scoreboarding, Tomasulo, reorder buffer in 
superscalar 
 

 Solutions in the example 

– delay mul instruction until div instruction has written its result 

– write back result of mul instruction and purge result of div 
  question: precise interrupt in case of division by zero ? 
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WAR possible? 

 WAR may occur if instruction can complete before a previous instruction reads 

its operand  

  extreme case of out-of-order execution  

  superscalar processors 

 

 not our simple RISC processor which ”issues” and starts execution in-order 
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Pipelining basics: summary 

 Hazards limit performance 

– Structural hazards: need more HW resources 

– Data hazards: need detection and forwarding 

– Control hazards: early evaluation, delayed branch, prediction 

 

 Compilers may reduce cost of data and control hazards 

– Compiler Scheduling 

– Branch delay slots 

– Static branch prediction 

 

 Increasing length of pipe increases impact of hazards; pipelining helps 

instruction bandwidth, not latency 

 

 Multi-cycle operations (floating-point) and interrupts make pipelining harder 
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RISC Processors: Early RISC Processors 

 
 Berkeley RISC I, II  SPARC  microSPARCII 

 

 Stanford MIPS  MIPS R3000  MIPS R4000 and 4400 

 

 contrasted to: picoJava I (no RISC, stack architecture) 
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Case study: MIPS R3000 

 scalar RISC processor introduced in 1995 

 

 most similar to DLX 

 

 5-stage pipeline: IF, ID, EX, MEM, WB; cannot recognize pipeline hazards! 

 

 32-bit instructions with three formats 

 

 32  32-bit registers 
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Case Study:  

MIPS R3000 

Exception/Control 

Memory Management 

48-entry TLB 

Registers 

Registers 

System  
Control  
Coprocessor CP0 

CPU Registers 

ALU 

Shifter 

Integer Multiplier/Divider 

Address Adder 

PC Increment/MUX 

Integer  
Unit CPU 

Master Pipeline/Bus Control 

Virtual Page Number/Virtual Address 

Address(18) Tag(20+4) Data(32+4) 

Control 

Local 
Control 
Logic 
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Case Study: MIPS R4000 (and R4400) 

 8 Stage Pipeline (sometimes called: superpipeline): 

– IF: first half of fetching of instruction; PC selection, initiation of instruction 
cache access. 

– IS: second half of access to instruction cache.  

– RF: instruction decode and register fetch, hazard checking, and also 
instruction cache hit detection. 

– EX: execution, which includes effective address calculation, ALU operation, 
and branch target computation and condition evaluation. 

– DF: data fetch, first half of access to data cache. 

– DS: second half of access to data cache. 

– TC: tag check, determine whether the data cache access hit. 

– WB: write back for loads and register-register operations. 

 

 More details in book! 
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Performance of the MIPS R4000 pipeline 

 Four major causes of pipeline stalls or losses: 

– load stalls: use of a load result one or two cycles after the load 

– branch stalls: two-cycle stall on every taken branch plus unfilled or 

cancelled branch delay slots 

– FP result stalls: because of RAW for a FP operand 

– FP structural stalls: delays because of issue restrictions arising from 

conflicts for functional units in the FP pipeline 
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Java-processors overview 

 Java Virtual Machine and Java Byte Code 

 

 Java-processors picoJava-I and microJava 701 

 

 Evaluation with respect to embedded system application 

 

 Research idea:  

Komodo project: Multithreaded Java Core 



71 

Stack architecture: Java Virtual Machine 

 The Java Virtual Machine is the name of the (abstract) engine that actually 
executes a Java program compiled to Java byte code. 

 

 Characteristics of the JVM: 

– stack architecture, frames are maintained on the Java stack 

– no general-purpose registers, but local variables and (frame local) operand 
stack 

– some special status infos: top-of-stack-index, thread status info, pointers 
to current method, method`s class and constant pool, stack-frame pointer, 
program counter 

– 8-bit opcode (max. 256 instructions), not enough to support all data types, 
therefore shorts, bytes and chars are relegated to second class status 

– escape opcodes for instruction set extensions 

– data types: boolean, char, byte, short, reference, int, long, float (32 bit) and 
double (64 bit), both IEEE 754 

– big endian (network order: MSB first in the file) 
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Case study: picoJava-I (and microJava 701) 

 Applications in Java are compiled to target the Java Virtual Machine. 

 

 Java Virtual machine instruction set: Java Byte Code. 

– Interpreter 

– Just-in-time compiler 

– embedded in operating system or Internet browser 

 

 Java processors aim at:  

– direct execution of Java byte code 

– hardware support for thread synchronization 

– hardware support for garbage collection 

– embedded market requirements 
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picoJava-I microarchitecture 

I/O bus and memory interface unit 

I-cache  
(0-16 kB) 

Instruction  
buffer  

  
Instruction  
decoding  

and folding 

Stack cache unit  
(64 entries) 

Execution  
control logic 

D-cache  
controller 

PC  
trap  

control 

32 

96 

Integer unit  
data path 

Floating-point  
data path 

32 

32 

D-cache  
(0-16 kB) 

32 
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picoJava-I microarchitecture features 

 Instruction cache (optional): up to 16 Kbytes, direct-mapped, 8 byte line size 

 Data cache (optional): up to 16 Kbytes, two-way set-associative write-back,  
32 bit line size 

 12 byte instruction buffer decouples instruction cache from rest of pipeline, 
write in: 4 bytes, read out: 5 bytes 

 Instruction format (JVM): 8-bit opcode plus additional bytes, on average 1.8 bytes 
per instruction 

 Decode up to 5 bytes and send to execution stage (integer unit) 

 Floating-point unit (optional): IEEE 754, single and double precision 

 Branch prediction: predict not taken 

– core pipeline 4 stages  two cycle penalty when branch is taken 

– branch delay slots can be used by microcode (not available to JVM!!) 

 Hardware stack implements JVM's stack architecture  

– 64-entry on-chip stack cache instead of register file 

– managed as circular buffer, top-of-stack pointer wraps around, dribbling 
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picoJava-I pipeline 

Fetch 4-byte 

cache lines 

into the  

instruction  

buffer 

Decode 
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instructions 
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picoJava-I stack architecture & drippler 

Parameters and locals 
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JVM instruction frequencies 

                                 Dynamic

                                 frequency

                                 before

Instruction class                folding

 %

Local-variable loads            34.5

Local-variable stores           7.0

Loads from memory               20.2

Stores to memory                4.0

Compute (integer/floating-point) 9.2

Branches                        7.9

Calls/returns                   7.3

Push constant                   6.8

Miscellaneous stack operations  2.1

New objects                     0.4

All others                      0.6
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picoJava-I instruction set 

 Not all instructions are implemented in hardware. 

 Most instructions execute in 1 to 3 cycles. 

 Of the instructions not implemented directly in hardware, those deemed critical 
for system performance are implemented in microcode. 

– e.g. method invocation 

 The remaining instructions are emulated by core traps. 

– e.g. creating a new object 

 Additional to JVM: extended instructions in reserved opcode space with 2-byte 
opcodes (first one of the reserved virtual machine opcode bytes) 

– for implementation of system-level code (additional instructions not in 
JVM) 

– JVM relies on library calls to the underlying operating system 

– extended byte codes: arbitrary load/store, cache management, internal 
register access, miscellaneous 
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Folding 

Cycle 1: iload_0 

T 

L0 

T 
L0 

L0 

T+L0 

L0 

+ T+L0 

L0 

+ T 

L0 

Cycle 2: iadd Cycle 1: iload_0, iadd 

Without folding: the processor executes 

iload_0 during the first cycle and iadd 

during the second cycle.  

With folding: iload_0 and 

iadd execute in the same 

cycle. 
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JVM instruction frequencies without and with folding 

                                 Dynamic  Dynamic               

                                 frequency  frequency               

                                 before  after  Instructions

Instruction class                folding  folding  folded

 %   %  %

Local-variable loads            34.5 24.4 10.1

Local-variable stores           7.0 7.0 0.0

Loads from memory               20.2 20.2 0.0

Stores to memory                4.0 4.0 0.0

Compute (integer/floating-point) 9.2 9.2 0.0

Branches                        7.9 7.9 0.0

Calls/returns                   7.3 7.3 0.0

Push constant                   6.8 2.0 4.8

Miscellaneous stack operations  2.1 2.1 0.0

New objects                     0.4 0.4 0.0

All others                      0.6 0.6 0.0

Total                           100.0 85.1 14.9
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microJava 701 preview 

 32-bit picoJava 2.0 core 

 Java byte code and C code optimized 

 6 stage pipeline 

 Extensive folding allows up to 4 instructions executed per cycle 

 Integrate system functionalities on-chip: memory controller, I/O 

bus controller 

 Planned for 1998: 0.25 m CMOS, 2.8 million transistors, 200 MHz 

 No silicon 
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picoJava-I evaluation 

 Java byte code is extremely dense by stack architecture 

 picoJava excellent performance compared to Pentium or 486 

 short pipeline  

 hardware stack  

– dribbler removes register filling/spilling,  

 folding removes 60% of stack overhead instructions 

 stack architecture disables most ILP (except for folding which removes some 
overhead)  

– not competing with today’s general-purpose processor 

 but applicable as microcontroller in real-time embedded systems!! 

– embedded support could be improved, hard real-time requirements not 
fulfilled 

– multithreading support may improve  

• fast event reaction (fast context switching) 

• and performance (by latency masking) 
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The Komodo microcontroller:  

MT ("Multithreaded") Java core 

 start with picoJava-I-style pipeline, extend to multithreading 

– multiple register sets  multiple stack register sets, 

– IF is able to load from different PCs,  
(PC, stack reg. ID) is propagated through pipeline 

– zero-latency context switch 

 external signals are handled by thread activation, not by interrupting 
instruction stream 

 different scheduling schemes 

– high priority thread runs with full speed, other threads in latency time slots  

– guaranteed percentage scheduling scheme 

 multithreading is additionally used whenever a latency arises, e.g. long latency 
operations 
 

 more information: http://goethe.ira.uka.de/~jkreuzin/komodo/komodoEng.html 
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Conclusions  to Chapter 1 

 Simple RISC processors implement pipelining basics 

– gets more complicated today with 

• multi-cycle operations 

• multiple issue 

• out-of-order issue and execution 

• dynamic speculation techniques 

 

 Java processors are not RISC due to their stack architecture 

– JVM instructions are not "reduced" 

– stack register set instead of directly addressable registers 

– variable-length instructions (compact, but hard to fetch and decode) 


