Remote Procedure Calls

Submitted By:
Ruchi Mittal



Remote Procedure Call

A convenient way to construct a client-server connection
without explicitly writing send/ receive type programs
(helps maintain transparency).

keme| kemel




Remote Procedure Calls (RPC)

General message passing model. Provides
programmers with a familiar mechanism for building
distributed applications/systems

Familiar semantics (similar to LPC)

Simple syntax, well defined interface, ease of use, generality
and IPC between processes on same/different machines.

It is generally synchronous
Can be made asynchronous by using multi-threading



A typical model for RPC

Caller
Process

Call procedure
and wait for I'Epd'g"‘

Fesume
Execution

r

Sarver
Process

Request Message
(containg Remote Procedure’s parametersd

Reply Meseage
{ contains result of procedure

Fecerve request and start
Procedure execution

Frocedurs Executes

Send reply and wait
For newt message

execution) L



RPC continued...

Transparency of RPC
Syntactic Transparency
Semantic Transparency

Unfortunately achieving exactly the same semantics for RPCs and LPCs is
close to impossible

= Disjoint address spaces
= More vulnerable to failure
= Consume more time (mostly due to communication delays)



Implementing RPC Mechanism

Uses the concept of stubs; A perfectly normal LPC
abstraction by concealing from programs the interface
to the underlying RPC

Involves the following elements
The client
The client stub
The RPC runtime
The server stub
The server



Remote Procedure Call cont.)

Client procedure calls the client stub in a normal way
Client stub builds a message and traps to the kernel
Kernel sends the message to remote kernel

Remote kernel gives the message to server stub

Server stub unpacks parameters and calls the server
Server computes results and returns it to server stub
Server stub packs results in a message and traps to kernel
Remote kernel sends message to client kernel

Client kernel gives message to client stub

Client stub unpacks results and returns to client



RPC servers and protocols...

RPC Messages (call and reply messages)

Server Implementation
Stateful servers
Stateless servers

Communication Protocols
Request(R)Protocol
Request/Reply(RR) Protocol
Request/Reply/Ack(RRA) Protocol



RPC NG: DCOM & CORBA

Object models allow services and functionality to be
called from distinct processes

DCOM/COM+(Win2000) and CORBA IIOP extend this to
allow calling services and objects on different machines

More OS features (authentication,resource

management, process creation,...) are being moved to
distributed objects.



