
Stacks

Data Structures



What is a stack?
• A stack is a list with the restriction 

– that insertions and deletions can only be performed at the top of the 
list

– The other end is called bottom

• Fundamental operations:
– Push: Equivalent to an insert
– Pop: Deletes the most recently inserted element
– Top: Examines the most recently inserted element



Stack
• Stacks are less flexible

but are more efficient and easy to implement
• Stacks are known as LIFO (Last In, First 

Out) lists.
– The last element inserted will be the first to be 

retrieved



Push and Pop
• Primary operations: Push and Pop
• Push

– Add an element to the top of the stack
• Pop

– Remove the element at the top of the stack

A
top

empty stack

top

top

top

push an element push another

A

B

pop

A



Implementation of Stacks

• Any list implementation could be used to 
implement a stack
– Arrays (static: the size of stack is given 

initially)
– Linked lists (dynamic: never become full)

• We will explore implementations based on 
array and linked list

• Let’s see how to use an array to implement 
a stack first



Stack class

• Attributes of Stack
– maxTop: the max size of stack
– top: the index of the top element of stack
– values: point to an array which stores elements of stack

• Operations of Stack
– IsEmpty: return true if stack is empty, return false otherwise
– IsFull: return true if stack is full, return false otherwise
– Top: return the element at the top of stack
– Push: add an element to the top of stack
– Pop: delete the element at the top of stack
– DisplayStack: print all the data in the stack



Push Stack
• void Push(const double x);

– Push an element onto the stack
– If the stack is full, print the error information.
– Note top always represents the index of the top element. After 

pushing an element, increment top.

void Stack::Push(const double x) {

if (IsFull())

cout << "Error: the stack is full." << endl;

else

values[++top] = x;

}



Pop Stack
• double Pop()

– Pop and return the element at the top of the stack
– If the stack is empty, print the error information. (In this case, the 

return value is useless.)
– Don’t forgot to decrement top

double Stack::Pop() {

if (IsEmpty()) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else {

return values[top--];

}

}



Stack Top
• double Top()

– Return the top element of the stack
– Unlike Pop, this function does not remove the top element

double Stack::Top() {

if (IsEmpty()) {

cout << "Error: the stack is empty." << endl;

return -1;

}

else

return values[top];

}



Balancing Symbols
• To check that every right brace, bracket, and 

parentheses must correspond to its left counterpart
– e.g. [( )] is legal, but [( ] ) is illegal

• Algorithm
(1) Make an empty stack.
(2) Read characters until end of file

i. If the character is an opening symbol, push it onto the stack
ii. If it is a closing symbol, then if the stack is empty, report an 

error
iii. Otherwise, pop the stack. If the symbol popped is not the   

corresponding opening symbol, then report an error
(3) At end of file, if the stack is not empty, report an error



Postfix Expressions
• Calculate 4.99 * 1.06 + 5.99 + 6.99 * 1.06

– Need to know the precedence rules 
• Postfix (reverse Polish) expression

– 4.99 1.06 * 5.99  + 6.99 1.06 * + 
• Use stack to evaluate postfix expressions

– When a number is seen, it is pushed onto the stack
– When an operator is seen, the operator is applied to the 2 numbers 

that are popped from the stack. The result is pushed onto the stack
• Example

– evaluate  6  5  2  3  +  8  *  +  3  +  *
• The time to evaluate a postfix expression is O(N)

– processing each element in the input consists of stack operations 
and thus takes constant time


