
Languages and Tools

for Web Programming

Uri Dekel

ISRI, Carnegie Mellon University

Presented in UI course

Some examples taken from w3schools.com

2

Outline

 Part 1: Static document formats for the web

 Document forms: HTML and CSS

 Data forms: XML, DTDs and Schemas, XSL

 High-end graphics forms: VRML, SVG

 Part 2: Client-side interactive web pages

 Client-Side Scripting languages: JavaScript, VBScript

 Client-Side embedded applications: Java applets, ActiveX, Flash

 Part 3: Server-side web page creation

 Scripting languages: CGI and Perl, PHP, ColdFusion

 High-level frameworks: Servlets and JSP, ASP, ASP.NET

 Part 4: Web service architectures
 WSDL, SOAP

Document Formats:

The evolution of HTML

4

HTML

 HyperText Markup Language

 Primary document type for the web
 Transmitted using the HyperText Transfer Protocol

 Client sends request string (with parameters)

 Server returns a document
 Stateless protocol

 Describes document content and structure
 Precise formatting directives added later

 Content and structure in same document

 Browser or formatter responsible for rendering
 Can partially render malformed documents

 Different browsers render differently

5

HTML structure

 HTML document is a text based

representation of a tree of tags

 General structure:

 <OUTERTAG attribute1=‘val1’ attribute2=‘val2’>
<INNERTAG attribute3=‘val3’>some text</INNERTAG>
</OUTERTAG>

6

HTML evolution

 HTML 1 [early ‘90s]
 Invented by Tim Berners-Lee of CERN

 Aimed as standard format to faciliate collaboration

between physicists

 Based on the SGML framework

 Old ISO standard for structuring documents

 Tags for paragraphs, headings, lists, etc.

 HTML added the hyperlinks, thus creating the web

 Rendered on prototype formatters

7

HTML evolution

 HTML+ [mid ‘94]
 Defined by small group of researchers

 Several new tags

 Most notably, IMG for embedding images

 Many browsers

 First text-based browser (Lynx) released in 03/93

 First graphical browser (Mosaic) released in 04/93

 First W3 conference [5/94]

 HTML+ presented

8

HTML evolution

 HTML 2 [7/94-11/95]

 Prompted by variety of diverging language

variants and additions of different browsers

 Adds many widely used tags

 e.g., forms

 No custom style support

 e.g., no colors

 W3 consortium formed [Late 94]

 Mission: Open standards for the web

9

HTML evolution

 Netscape formed [11/94]

 Becomes immediate market leader

 Support for home users

 Forms a de-facto standard

 Use of “Netscape proprietary tags”
 Difficult for other browsers to replicate

 Documents start rendering differently

 Addition of stylistic tags

 e.g., font color and size, backgrounds, image alignment

 Frowned upon by structure-only advocates

10

HTML evolution

 HTML 3.0 draft proposed

 Huge language overhaul

 Tables, math, footnotes

 Support for style sheets (discussed later)

 Too difficult for browsers to adapt

 Every browser implemented different subset

 But claimed to support the standard

 And added new tags…

 Standard abandoned

 Incremental changes from here on

11

HTML evolution

 Microsoft introduces Internet explorer [8/95]
 First serious competition to Netscape

 Starts introducing its own tags

 e.g., MARQUEE

 Effectively splitting web sites into Microsoft and Netscape
pages
 Many sites have two versions

 Microsoft starts supporting interactive application
embedding with ActiveX
 Netscape responds with the emerging Java technology

 Starts supporting JavaScript

 Microsoft introduces VBScript

12

HTML evolution

 HTML 3.2 [1/97]

 Implements some of the HTML 3.0 proposals

 Essentially catches up with some widespread

features.

 Supports applets

 Placeholders for scripting and stylesheet support

13

HTML evolution

 HTML 4 [12/97]
 Major overhaul

 Stylesheet support

 Tag identifier attribute

 Internationalization and bidirectional text

 Accessibility

 Frames and inline frames

 <object> tag for multimedia and embedded objects

 Adapted by IE (market leader)

 Slow adaptation by Netscape

 XML 1.0 standard [2/98]
 XHTML 1.0 [1/00, 8/02]

14

Limitations of HTML

 No support for accessibility until HTML 4

 No support for internationalization until HTML 4

 No dynamic content in original definition

 No inherent support for different display

configurations (e.g., grayscale screen)

 Except for alt tag for images

 Added in CSS2

 No separation of data, structure and formatting

 Until version 4

15

Wireless Markup Language

(WML)

 Markup language for WAP browsers

 WAP = Wireless Application Protocol

 Based on limited HTML, uses XML notation

 Uses WMLScript scripting language, based on
JavaScript

 A page is called a “deck”, displayed in
individual sections called “cards”
 Tasks are used to perform events

 Variables used to maintain state between cards

Client-side: Cascading

Style Sheets

17

Why CSS?

 HTML was not meant to support styling
information

 But browsers started supporting inline style
changes to make web look better

 Inline styling information is problematic

 Difficult to change

 Lack of consistency

 No support for different display formats

 Bloats pages

 No support for some styling features

18

Connecting HTML to CSS

 HTML document typically refers to external

style sheet
 <HEAD>

 <LINK rel="stylesheet" type="text/css“
 href="fluorescent.css">

 </HEAD>

 Style sheets can be embedded:

 <HEAD><STYLE type="text/css">
 <!-- …CSS DEFINITIONS.. -->
 </STYLE></HEAD>

19

Connecting HTML to CSS

 Styles can be embedded inline with the style attribute

 Style sheets can be chosen by media type

 Simply add a media attribute to the link or style tags

 Choose from: screen, tty, tv, projection, handheld, braille, aural, all

 HTML document can provide several stylesheet options

 Give titles to each stylesheet

 One preferred (default) style, the rest are alternates

 e.g.,
http://www.w3.org/Style/Examples/007/alternatives.html

 Default configuration in internal browser stylesheet and
user stylesheet

http://www.w3.org/Style/Examples/007/alternatives.html

20

Style sheet structure

 Declaration gives value to property
 Property: value

 e.g., color: red

 Styles are applied to selectors
 Selector describes element

 Simplest form is tag type

 e.g., P {color:red; font-size: 16px}

 Style sheet is a series of style applications
 Can import other stylesheets

 @import url(corestyles.css);
BODY {color: red; background-color: black}

 Style of enclosing element is inherited by enclosed

21

Selectors

 Type selectors

 Name of HTML elements

 Pseudo-class

 Specific subset of an HTML elements

 e.g., :link, :visited, :active for the A tag

 Pseudo-element

 Specific subset of any element

 e.g., :first-line, :first-letter

 Context sensitive elements

 e.g., H2 I {color:green}

22

Selectors

 Element classes
 HTML document can classify tags

 e.g., <P class=“warning”>…</P>
 Can refer to element type with specific class

 e.g., P.warning {color:red}

 Can refer to all elements with specific class
 e.g., .warning {color:red}

 Use HTML tags <div> and

 Element IDs
 HTML entity can have a unique id attribute

 e.g., <P id=“copyright”>…</P>
 #copyright {color:blue}

23

Cascading

 Most properties are inherited

 From enclosing element to internal element

 Sort order for conflict resolution:

 Origin (page>user>browser)

 Weight (!important symbol allows overriding)

 Specificity

 Order

24

How is CSS applied?

1. Source document is parsed into a DOM tree

2. Media type is identified

3. Relevant stylesheets obtained

4. DOM tree annotated with values to every

property

5. Formatting structure generated

6. Formatting structure presented (rendered)

25

CSS2

 Extends CSS1

 Many new properties and built-in classes

 Better support for media types

 Stylesheet can specify type in selector

 Better support for accessibility

 Properties for aural rendering

 Better support for internationalization

Document Formats:

XML

XML, SAX, DOM, DTD,

XML-SCHEMA, XSL, XMLFO

27

XML

 Extensible Markup Language
 Based on SGML format

 Intended to facilitate data exchange

 Documents consist of tags and data
 Data is usually untyped characters

 Tags have names and attributes

 Document has tree structure
 Tags are nested

 Data areas are
considered leafs

 One root

<?xml version="1.0"?>

<person>

 <name type=“full”>John Doe</name>
 <tel type=“home”>412-555-4444</tel>
 <tel type=“work”>412-268-5555</tel>
 <email>johndoe@anon.net</email>

</person>

28

XML Structure

 XML documents have no semantics
 It is up to the programs using them

 XML does not enforce structure
 No restriction on possible tags

 No restriction on order, repeats, etc.

 Mixed content allowed

 Text followed by tags followed by text

 Allows HTML compatibility (XHTML)

 “Well-Formed Document”
 Tree structure with proper nesting

 Attributes are not repeated in same tag

29

XML Programming with SAX

 Lightweight simple event-based parser

 Originally in Java, ports for other languages

 Programmer instantiates SAX parser

 Parser is invoked on input and an

implementation of Document Handler

 Parser invokes callback functions on handler

during DFS traversal

 e.g., startDocument, endDocument,
startElement, endElement, etc.

30

XML Programming with DOM

 A heavyweight XML-based API

 Supported in multiple languages

 A programmatic representation of the XML
document tree

 Variety of interfaces representing elements, attributes, etc.

 User instantiates a DOM parser of specific vendor
and supplies XML file

 Receives Document interface

 Different parsers use different optimizations

31

DTD

 Document Type Descriptor

 Impose structure on XML document

 Usually placed in separate file

 XML refers to HTML file using following header:

 <!DOCTYPE root-element SYSTEM "filename">

 DTD can be placed inline

 An XML document is Valid if it conforms to

the DTD

 DTD consists of a series of declarations

32

DTD Element Declarations

 <!ELEMENT element-name category>
 Category can be:

 ANY

 (#PCDATA)

 Text… Element becomes leaf
 EMPTY

 No tags or text can be nested

 Sequence of nested elements
 Essentially a regular expression
 e.g., <!ELEMENT note

 (to+,from,cc*,subject?,
 header,(message|body))>

 <!ENTITY entity-name "entity-value">

 Declares a symbolic constant

33

DTD Attribute Declaration

 <!ATTLIST element-name attribute-name attribute-type
default-value>

 Attribute types include:

 CDATA for text

 (en1|en2|en3…) for enumeration

 ID for unique element identifiers

 IDREF for referring to other elements

 Must refer to existing IDs

 Default value can be:

 String for actual default value

 #REQUIRED for forcing user to specify value

 #IMPLIED for optional attributes

 #FIXED for constant

34

Limitations of DTD

 DTD is weaker than database schemas

 Only one type

 Writer and reader must agree on implied types

 No abstractions such as sets

 ID References are untyped

 No constraints

 Tag definitions are global

 XML-Schema provides these capabilities

 Important for e-commerce

35

XML-Schema

 Replacement for DTDs

 Written in XML

 More extensible to future additions

 Support built-in and user-defined data types

 Including typed references and complex data

types

 Support constraints

36

XML-Schema Example

 Schema document:
<?xml version="1.0"?>

<xs:schema xmlns:xs=“…“ targetNamespace=“…“ xmlns=“…"
elementFormDefault="qualified">

<xs:element name=“person">
 <xs:complexType><xs:sequence>

 <xs:element name=“name" type="xs:string"/>
 <xs:element name=“tel" type="xs:string"/>
 <xs:element name=“email" type="xs:string"/>
 </xs:sequence> </xs:complexType>

</xs:element> </xs:schema>

37

XML-Schema

 <xs:schema> header has following attributes:

 Namespace for XML Schema built-in tags

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 Namespace for elements defined by schema
 targetNamespace=“http://www.uridekel.com”

 Default namespace
 xmlns=“http://www.uridekel.com”

 Whether documents must use qualified names
 elementFormDefault="qualified"

 XML file refers to schema :
 <note xmlns="http://www.uridekel.com"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation=http://www.uridekel.com/pers.xsd>

38

XML-Schema: Defining simple

elements and attributes

 Defining a simple element

 <xs:element name="xxx" type="yyy"/>

 Common built-in types are xs:string, xs:decimal,

xs:integer, xs:boolean xs:date, xs:time

 Default and fixed attributes for values

 <xs:attribute name="xxx" type="yyy"/>

 Default and fixed attributes for values

 Add use=“optional” or use=“required”

39

XML-Schema: Restricting

values

 Nest <xs:simpleType> and
<xs:restriction base=“xs:type"> inside
the element or attribute definition

 Simple type can be named for reuse

 Further nest the following restrictions:
 <xs:minInclusive> and <xs:maxInclusive>

 A sequence of <xs:enumeration value=“val”>
 A regexp: <xs:pattern value=“regexp"/>

 Whitespace: <xs:whiteSpace value=“mode"/>
 <xs:minLength> and <xs:maxLength>

 Many others

40

XML-Schema: Defining

complex elements

 Create a new type with <xs:complexType>

 Extend an existing type by nesting <xs:complexContent> and
<xs:extension base="personinfo">

 Specify child ordering with the following tags:

 <xs:all> – Each child appears exactly once, but can permutate

 <xs:choice> – Exactly one of the children will occur

 <xs:sequence> – Each child appears exactly once, in order

 Specify child recurrence with minOccurs and maxOccurs

 Elements can be grouped with

<xs:group name=“groupname”>
 Attributes group with <xs:attributeGroup>

41

XSL

 Extensible Stylesheet Language

 Intended to assist in presenting XML data

 CSS is not enough because it refers to HTML tags that

have some display semantics

 Responsible for transforming an XML document into an

XHTML document

 Essentially a tree transformation

 Consists of three languages:

 XSLT for transforming XML documents

 XPath for defining parts of XML documents

 XSL-FO for formatting the elements

42

XPath

 A system for referring to XML tree elements

 Used in XSLT for matching templates

 Similar to directory structure
 Absolute paths start with /

 Relative paths starts start with child name

 Parent is selected with ..

 Ignore ancestors with //

 e.g., //cd selects all cd elements

 Variety of special functions

43

XSLT

 Conditional Selection
 e.g., /catalog/cd[price>10.80]

 Wildcard Selection
 e.g., /catalog/*/price

 Selection of specific child
 e.g., /catalog/cd[1]

 e.g., /catalog/cd[last()]

 Referencing attributes
 e.g., //cd[@country='UK']

44

XSLT

 XSLT is used to recursively transform a tree
 XSL sheet consists of templates

 Matching condition

 Transformation

 Transformation of the source tree is a recursive traversal

 No recursive search on matched nodes
 Use <xsl:apply-templates> to force

 Add select attribute to apply to a subset

 If match found, transformation is applied to matching part

 in result document

 Transformation can query nodes in the subtree

 Nonmatching parts are unmodified in result document

45

XSLT Example

 XML Document

<?xml version="1.0"

 encoding="ISO-8859-1"?>

<?xml-stylesheet

type="text/xsl“
 href="cdcatalog.xsl"?>
<catalog>

 <cd>

 <title>Empire

Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

<company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

…
</catalog>

Stylesheet

<?xml version="1.0" encoding="ISO-8859-

1"?> <xsl:stylesheet version="1.0“
xmlns:xsl="http://www.w3.org/1999/XSL/Tran

sform">

<xsl:template match="/">

 <html><body><h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th align="left">Title</th>

 <th align="left">Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of

select="title"/></td>

 <td><xsl:value-of

select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table></body></html>

</xsl:template>

</xsl:stylesheet>

46

XSLT Structure

 Every <xsl:template> element attempts to match a set of
XML nodes.
 The match attribute associates the template with particular

nodes

 The <xsl:value-of> element extracts data from the source
node
 The select attribute specifies what to extract, relative to the

node matched by the template

 The <xsl:for-each> element enables iteration over a specific
subset of nodes
 Selection can be filtered

 e.g., <xsl:for-each select="catalog/cd[artist='Bob
Dylan']">

 Nodes can traversformed in a sorted order with <xsl:sort>

 e.g., <xsl:sort select="artist"/>

47

XSLT Structure

 Use <xsl:if> for simple conditional on output:
 <xsl:if test=“test“>…output…</xsl:if>

 Use <xsl:choose> for more complex conditionals
 <xsl:choose>

 <xsl:when test=“test1">
 ... some code ...
 </xsl:when>

 <xsl:when test=“test2">
 ... some code ...
 </xsl:when>
 <xsl:otherwise>
 ... some code
 </xsl:otherwise>
</xsl:choose>

48

Activating XSL

 Include <?xml-stylesheet directive in XML

 XML can be displayed in browser

 Couples data and presentation

 Use offline XSLT transformator

 Typically useful for data processing

 Programmatically perform transformation in HTML

file using scripting

<html><body>

<script type="text/javascript">

xml = new ActiveXObject("Microsoft.XMLDOM")

xml.load("cdcatalog.xml")

var xsl = new ActiveXObject("Microsoft.XMLDOM")

xsl.load("cdcatalog.xsl")

document.write(xml.transformNode(xsl))

</script> </body> </html>

49

XML-FO

 Extensible Stylesheet Language Formatting

Objects

 A W3C language for formatting XML data

 Now part of the XSL standard, a target language

for transformed documents

 Supports a variety of output targets

 Output is in “pages”
 Further separated into rectangular areas

50

XQuery

 A standard for SQL-like queries on XML data

 Still at the W3C draft stage

 Relies on XPath and uses its data model

 Supports simple queries:

 e.g., doc("books.xml")/bib/book[price<50]

 Supports complex queries with FLWOR:
 e.g., for $x in doc("books.xml")/bib/book

where $x/price>50 order by $x/title return

$x/title

51

XForms

 A new infrastructure for web forms

 Separates form functionality from presentation

 Single XML form definition model

 Form data maintained as XML instance data

 Supports suspend and resume

 XForms UI replaces XHTML form controls

 Proprietary UIs provide alternative presentation

 Extensible for new form elements and widgets

Client Side:

Scripting Languages

JavaScript, VBScript, DHTML

53

JavaScript

 The most common scripting language
 Originally supported by Netscape, eventually by IE

 Typically embedded in HTML page
 Executable computer code within the HTML content

 Interpreted at runtime on the client side

 Can be used to dynamically manipulate an HTML
document
 Has access to the document’s object model
 Can react to events

 Can be used to dynamically place data in the first place

 Often used to validate form data

 Weak typing

54

JavaScript Syntax

 Code written within <script> element
 e.g., <script type="text/javascript">
 document.write("Hello World!")

 </script>

 Use src attribute for scripts in external files

 Placement determines execution time

 Scripts in header must be invoked explicitly

 e.g., during events

 Scripts in body executed when that part is being
processed.

55

JavaScript Syntax

 User can declare variables
 e.g., var name = “user”;
 Variables can be global to the page

 User can declare functions
 function func(argument1,argument2,…)

{ some statements }

 Function can return values with return

 Standard conditionals
 if..then..else, switch, ?: operator

 Standard loops
 while, do..while, for

56

JavaScript Syntax

 JavaScript has built-in “Object” types
 Variety of operators and built-in functions

 Arrays, Booleans, Dates, Math, Strings

 Direct access to the HTML DOM model

 HTML Elements have script-specific event attributes
 e.g., <body onmousedown="whichButton()">

 e.g., <input type="button" onclick="uncheck()"

 value="Uncheck Checkbox">

57

VBScript

 Microsoft’s answer to JavaScript
 Never been supported by Netscape

 Less in use now

 Use <script type="text/vbscript">

 Similar to JavaScript

 Follows Visual Basic look and feel

 Possible to declare variables
 Use “option explicit” to force declaration

 Separates procedures and functions

58

DHTML

 DHTML is a marketing buzzword

 It is not a W3C standard

 Every browser supports different flavour

 It is HTML 4 + CSS stylesheets + scripting
language with access to document model

