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Outline 

 Part 1: Static document formats for the web 

 Document forms: HTML and CSS 

 Data forms: XML, DTDs and Schemas, XSL 

 High-end graphics forms: VRML, SVG 

 Part 2: Client-side interactive web pages 

 Client-Side Scripting languages: JavaScript, VBScript 

 Client-Side embedded applications: Java applets, ActiveX, Flash 

 Part 3: Server-side web page creation 

 Scripting languages: CGI and Perl, PHP, ColdFusion 

 High-level frameworks: Servlets and JSP, ASP, ASP.NET 

 Part 4: Web service architectures 
 WSDL, SOAP 



Document Formats: 

The evolution of HTML 
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HTML 

 HyperText Markup Language 

 Primary document type for the web 
 Transmitted using the HyperText Transfer Protocol 

 Client sends request string (with parameters) 

 Server returns a document 
 Stateless protocol 

 Describes document content and structure 
 Precise formatting directives added later 

 Content and structure in same document 

 Browser or formatter responsible for rendering 
 Can partially render malformed documents 

 Different browsers render differently 
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HTML structure 

 HTML document is a text based 

representation of a tree of tags 

 General structure: 

 <OUTERTAG attribute1=‘val1’ attribute2=‘val2’> 
<INNERTAG attribute3=‘val3’>some text</INNERTAG> 
</OUTERTAG> 
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HTML evolution 

 HTML 1 [early ‘90s] 
 Invented by Tim Berners-Lee of CERN  

 Aimed as standard format to faciliate collaboration 

between physicists 

 Based on the SGML framework 

 Old ISO standard for structuring documents 

 Tags for paragraphs, headings, lists, etc. 

 HTML added the hyperlinks, thus creating the web 

 Rendered on prototype formatters 
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HTML evolution 

 HTML+ [mid ‘94] 
 Defined by small group of researchers 

 Several new tags 

 Most notably, IMG for embedding images 

 Many browsers  

 First text-based browser (Lynx) released in 03/93 

 First graphical browser (Mosaic) released in 04/93 

 First W3 conference [5/94] 

 HTML+ presented 
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HTML evolution 

 HTML 2 [7/94-11/95]  

 Prompted by variety of diverging language 

variants and additions of different browsers 

 Adds many widely used tags 

 e.g., forms 

 No custom style support 

 e.g., no colors 

 W3 consortium formed [Late 94] 

 Mission: Open standards for the web 
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HTML evolution 

 Netscape formed [11/94] 

 Becomes immediate market leader 

 Support for home users 

 Forms a de-facto standard 

 Use of “Netscape proprietary tags” 
 Difficult for other browsers to replicate 

 Documents start rendering differently  

 Addition of stylistic tags 

 e.g., font color and size, backgrounds, image alignment 

 Frowned upon by structure-only advocates 
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HTML evolution 

 HTML 3.0 draft proposed 

 Huge language overhaul 

 Tables, math, footnotes 

 Support for style sheets (discussed later) 

 Too difficult for browsers to adapt 

 Every browser implemented different subset 

 But claimed to support the standard 

 And added new tags… 

 Standard abandoned 

 Incremental changes from here on 
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HTML evolution 

 Microsoft introduces Internet explorer [8/95] 
 First serious competition to Netscape 

 Starts introducing its own tags 

 e.g., MARQUEE 

 Effectively splitting web sites into Microsoft and Netscape 
pages 
 Many sites have two versions 

 Microsoft starts supporting interactive application 
embedding with ActiveX 
 Netscape responds with the emerging Java technology 

 Starts supporting JavaScript 

 Microsoft introduces VBScript 
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HTML evolution 

 HTML 3.2 [1/97] 

 Implements some of the HTML 3.0 proposals 

 Essentially catches up with some widespread 

features. 

 Supports applets 

 Placeholders for scripting and stylesheet support 

 

 

 

 

 



13 

HTML evolution 

 HTML 4 [12/97] 
 Major overhaul  

 Stylesheet support  

 Tag identifier attribute 

 Internationalization and bidirectional text 

 Accessibility 

 Frames and inline frames 

 <object> tag for multimedia and embedded objects 

 Adapted by IE (market leader) 

 Slow adaptation by Netscape 

 XML 1.0 standard [2/98] 
 XHTML 1.0 [1/00, 8/02] 
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Limitations of HTML 

 No support for accessibility until HTML 4 

 No support for internationalization until HTML 4 

 No dynamic content in original definition 

 No inherent support for different display 

configurations (e.g., grayscale screen) 

 Except for alt tag for images 

 Added in CSS2 

 No separation of data, structure and formatting 

 Until version 4 
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Wireless Markup Language 

(WML) 

 Markup language for WAP browsers 

 WAP = Wireless Application Protocol 

 Based on limited HTML, uses XML notation 

 Uses WMLScript scripting language, based on 
JavaScript 

 A page is called a “deck”, displayed in 
individual sections called “cards” 
 Tasks are used to perform events 

 Variables used to maintain state between cards 

 



Client-side: Cascading 

Style Sheets 
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Why CSS? 

 HTML was not meant to support styling 
information 

 But browsers started supporting inline style 
changes to make web look better 

 Inline styling information is problematic 

 Difficult to change 

 Lack of consistency 

 No support for different display formats 

 Bloats pages  

 No support for some styling features 
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Connecting HTML to CSS 

 HTML document typically refers to external 

style sheet 
  <HEAD> 

 <LINK rel="stylesheet" type="text/css“  
 href="fluorescent.css"> 

 </HEAD>  

 Style sheets can be embedded: 

   <HEAD><STYLE type="text/css"> 
      <!-- …CSS DEFINITIONS.. --> 
  </STYLE></HEAD>  
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Connecting HTML to CSS 

 Styles can be embedded inline with the style attribute 

 Style sheets can be chosen by media type 

 Simply add a media attribute to the link or style tags 

 Choose from: screen, tty, tv, projection, handheld, braille, aural, all  

 HTML document can provide several stylesheet options 

 Give titles to each stylesheet 

 One preferred (default) style, the rest are alternates 

 e.g., 
http://www.w3.org/Style/Examples/007/alternatives.html 

 Default configuration in internal browser stylesheet and 
user stylesheet 

 

http://www.w3.org/Style/Examples/007/alternatives.html
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Style sheet structure  

 Declaration gives value to property 
 Property: value 

 e.g., color: red 

 Styles are applied to selectors 
 Selector describes element 

 Simplest form is tag type 

 e.g., P {color:red; font-size: 16px} 

 Style sheet is a series of style applications 
 Can import other stylesheets 

 @import url(corestyles.css); 
BODY {color: red; background-color: black}  

 Style of enclosing element is inherited by enclosed 
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Selectors 

 Type selectors 

 Name of HTML elements 

 Pseudo-class 

 Specific subset of an HTML elements 

 e.g., :link, :visited, :active for the A tag 

 Pseudo-element 

 Specific subset of any element 

 e.g., :first-line, :first-letter 

 Context sensitive elements 

 e.g., H2 I {color:green} 
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Selectors 

 Element classes 
 HTML document can classify tags 

 e.g., <P class=“warning”>…</P> 
 Can refer to element type with specific class 

 e.g., P.warning {color:red} 

 Can refer to all elements with specific class 
 e.g., .warning {color:red} 

 Use HTML tags <div> and <span> 

 Element IDs 
 HTML entity can have a unique id attribute 

 e.g., <P id=“copyright”>…</P> 
       #copyright {color:blue} 
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Cascading 

 Most properties are inherited 

 From enclosing element to internal element 

 Sort order for conflict resolution: 

 Origin (page>user>browser) 

 Weight (!important symbol allows overriding) 

 Specificity 

 Order 
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How is CSS applied? 

1. Source document is parsed into a DOM tree 

2. Media type is identified 

3. Relevant stylesheets obtained 

4. DOM tree annotated with values to every 

property 

5. Formatting structure generated 

6. Formatting structure presented (rendered) 
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CSS2 

 Extends CSS1 

 Many new properties and built-in classes 

 Better support for media types 

 Stylesheet can specify type in selector 

 Better support for accessibility 

 Properties for aural rendering 

 Better support for internationalization 



Document Formats: 

XML 

XML, SAX, DOM, DTD, 

XML-SCHEMA, XSL, XMLFO 
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XML 

 Extensible Markup Language  
 Based on SGML format 

 Intended to facilitate data exchange 

 Documents consist of tags and data 
 Data is usually untyped characters 

 Tags have names and attributes 

 Document has tree structure 
 Tags are nested 

 Data areas are  
considered leafs 

 One root 

 

<?xml version="1.0"?>  

<person> 

    <name type=“full”>John Doe</name> 
    <tel type=“home”>412-555-4444</tel> 
    <tel type=“work”>412-268-5555</tel> 
    <email>johndoe@anon.net</email> 

</person> 
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XML Structure 

 XML documents have no semantics 
 It is up to the programs using them 

 XML does not enforce structure 
 No restriction on possible tags 

 No restriction on order, repeats, etc. 

 Mixed content allowed 

 Text followed by tags followed by text 

 Allows HTML compatibility (XHTML) 

 “Well-Formed Document” 
 Tree structure with proper nesting  

 Attributes are not repeated in same tag 
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XML Programming with SAX 

 Lightweight simple event-based parser  

 Originally in Java, ports for other languages 

 Programmer instantiates SAX parser  

 Parser is invoked on input and an 

implementation of Document Handler 

 Parser invokes callback functions on handler 

during DFS traversal 

 e.g., startDocument, endDocument, 
startElement, endElement, etc. 
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XML Programming with DOM 

 A heavyweight XML-based API 

 Supported in multiple languages 

 A programmatic representation of the XML 
document tree 

 Variety of interfaces representing elements, attributes, etc. 

 User instantiates a DOM parser of specific vendor 
and supplies XML file 

 Receives Document interface 

 Different parsers use different optimizations 
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DTD 

 Document Type Descriptor 

 Impose structure on XML document 

 Usually placed in separate file 

 XML refers to HTML file using following header: 

 <!DOCTYPE root-element SYSTEM "filename">  

 DTD can be placed inline 

 An XML document is Valid if it conforms to 

the DTD 

 DTD consists of a series of declarations 
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DTD Element Declarations 

 <!ELEMENT element-name category>  
 Category can be: 

 ANY 

 (#PCDATA) 

 Text… Element becomes leaf 
 EMPTY 

 No tags or text can be nested 

 Sequence of nested elements 
 Essentially a regular expression 
 e.g., <!ELEMENT note  

 (to+,from,cc*,subject?, 
    header,(message|body))>  

 <!ENTITY entity-name "entity-value"> 

 Declares a symbolic constant 
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DTD Attribute Declaration 

 <!ATTLIST element-name attribute-name attribute-type 
default-value>  

 Attribute types include: 

 CDATA for text 

 (en1|en2|en3…) for enumeration 

 ID for unique element identifiers 

 IDREF for referring to other elements 

 Must refer to existing IDs 

 Default value can be: 

 String for actual default value 

 #REQUIRED for forcing user to specify value 

 #IMPLIED for optional attributes 

 #FIXED for constant 
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Limitations of DTD 

 DTD is weaker than database schemas 

 Only one type 

 Writer and reader must agree on implied types 

 No abstractions such as sets 

 ID References are untyped 

 No constraints 

 Tag definitions are global 

 XML-Schema provides these capabilities 

 Important for e-commerce 
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XML-Schema  

 Replacement for DTDs 

 Written in XML 

 More extensible to future additions  

 Support built-in and user-defined data types 

 Including typed references and complex data 

types 

 Support constraints 
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XML-Schema Example 

 Schema document: 
<?xml version="1.0"?> 

<xs:schema xmlns:xs=“…“ targetNamespace=“…“ xmlns=“…" 
elementFormDefault="qualified">  

<xs:element name=“person"> 
 <xs:complexType><xs:sequence>  

  <xs:element name=“name" type="xs:string"/> 
  <xs:element name=“tel" type="xs:string"/> 
  <xs:element name=“email" type="xs:string"/>  
 </xs:sequence> </xs:complexType>  

</xs:element> </xs:schema>  
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XML-Schema 

 <xs:schema> header has following attributes: 

 Namespace for XML Schema built-in tags 

 xmlns:xs="http://www.w3.org/2001/XMLSchema"  

 Namespace for elements defined by schema 
 targetNamespace=“http://www.uridekel.com” 

 Default namespace 
 xmlns=“http://www.uridekel.com” 

 Whether documents must use qualified names 
 elementFormDefault="qualified"   

 XML file refers to schema : 
 <note xmlns="http://www.uridekel.com" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:schemaLocation=http://www.uridekel.com/pers.xsd> 
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XML-Schema: Defining simple 

elements and attributes 

 Defining a simple element 

 <xs:element name="xxx" type="yyy"/> 

 Common built-in types are xs:string, xs:decimal, 

xs:integer, xs:boolean xs:date, xs:time 

 Default and fixed attributes for values 

 <xs:attribute name="xxx" type="yyy"/> 

 Default and fixed attributes for values 

 Add use=“optional” or use=“required” 
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XML-Schema: Restricting 

values  

 Nest <xs:simpleType> and 
<xs:restriction base=“xs:type"> inside 
the element or attribute definition 

 Simple type can be named for reuse 

 Further nest the following restrictions: 
 <xs:minInclusive>  and <xs:maxInclusive> 

 A sequence of <xs:enumeration value=“val”> 
 A regexp: <xs:pattern value=“regexp"/>  

 Whitespace: <xs:whiteSpace value=“mode"/>  
 <xs:minLength>  and <xs:maxLength> 

 Many others 
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XML-Schema: Defining 

complex elements 

 Create a new type with <xs:complexType> 

 Extend an existing type by nesting <xs:complexContent> and 
<xs:extension base="personinfo">  

 Specify child ordering with the following tags: 

 <xs:all> – Each child appears exactly once, but can permutate 

 <xs:choice> – Exactly one of the children will occur 

 <xs:sequence> – Each child appears exactly once, in order 

 Specify child recurrence with minOccurs and maxOccurs  

 Elements can be grouped with  

<xs:group name=“groupname”> 
 Attributes group with <xs:attributeGroup> 
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XSL 

 Extensible Stylesheet Language 

 Intended to assist in presenting XML data 

 CSS is not enough because it refers to HTML tags that 

have some display semantics 

 Responsible for transforming an XML document into an 

XHTML document 

 Essentially a tree transformation 

 Consists of three languages: 

 XSLT for transforming XML documents 

 XPath for defining parts of XML documents 

 XSL-FO for formatting the elements 
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XPath 

 A system for referring to XML tree elements 

 Used in XSLT for matching templates 

 Similar to directory structure 
 Absolute paths start with / 

 Relative paths starts start with child name 

 Parent is selected with .. 

 Ignore ancestors with // 

 e.g., //cd selects all cd elements 

 Variety of special functions 
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XSLT 

 Conditional Selection 
 e.g., /catalog/cd[price>10.80] 

 Wildcard Selection 
 e.g., /catalog/*/price 

 Selection of specific child 
 e.g., /catalog/cd[1] 

 e.g., /catalog/cd[last()] 

 Referencing attributes 
 e.g., //cd[@country='UK']  
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XSLT 

 XSLT is used to recursively transform a tree 
 XSL sheet consists of templates 

 Matching condition 

 Transformation 

 Transformation of the source tree is a recursive traversal 

 No recursive search on matched nodes 
 Use <xsl:apply-templates> to force 

 Add select attribute to apply to a subset 

 If match found, transformation is applied to matching part 

  in result document 

 Transformation can query nodes in the subtree 

 Nonmatching parts are unmodified in result document 
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XSLT Example 

 XML Document 

 

 

 

 

<?xml version="1.0"  

  encoding="ISO-8859-1"?> 

<?xml-stylesheet 

type="text/xsl“ 
  href="cdcatalog.xsl"?>  
<catalog> 

  <cd>  

     <title>Empire 

Burlesque</title> 

     <artist>Bob Dylan</artist> 

     <country>USA</country> 

     

<company>Columbia</company>  

     <price>10.90</price>  

     <year>1985</year> 

  </cd> 

… 
</catalog>  

Stylesheet 

<?xml version="1.0" encoding="ISO-8859-

1"?> <xsl:stylesheet version="1.0“  
xmlns:xsl="http://www.w3.org/1999/XSL/Tran

sform"> 

<xsl:template match="/"> 

  <html><body><h2>My CD Collection</h2> 

  <table border="1">  

     <tr bgcolor="#9acd32"> 

       <th align="left">Title</th> 

       <th align="left">Artist</th> 

     </tr> 

     <xsl:for-each select="catalog/cd">  

       <tr> 

         <td><xsl:value-of 

select="title"/></td>  

         <td><xsl:value-of 

select="artist"/></td>  

       </tr> 

     </xsl:for-each> 

  </table></body></html> 

</xsl:template>  

</xsl:stylesheet>  
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XSLT Structure 

 Every <xsl:template> element attempts to match a set of 
XML nodes. 
 The match attribute associates the template with particular 

nodes 

 The <xsl:value-of> element extracts data from the source 
node 
 The select attribute specifies what to extract, relative to the 

node matched by the template 

 The <xsl:for-each> element enables iteration over a specific 
subset of nodes 
 Selection can be filtered 

 e.g., <xsl:for-each select="catalog/cd[artist='Bob 
Dylan']">  

 Nodes can traversformed in a sorted order with <xsl:sort> 

 e.g., <xsl:sort select="artist"/>  
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XSLT Structure 

 Use <xsl:if> for simple conditional on output: 
 <xsl:if test=“test“>…output…</xsl:if> 

 Use <xsl:choose> for more complex conditionals 
 <xsl:choose> 

   <xsl:when test=“test1"> 
      ... some code ... 
   </xsl:when> 

     <xsl:when test=“test2"> 
      ... some code ... 
   </xsl:when> 
   <xsl:otherwise> 
      ... some code .... 
   </xsl:otherwise> 
</xsl:choose>  



48 

Activating XSL 

 Include <?xml-stylesheet directive in XML 

 XML can be displayed in browser 

 Couples data and presentation 

 Use offline XSLT transformator 

 Typically useful for data processing 

 Programmatically perform transformation in HTML 

file using scripting 

 

 

<html><body> 

<script type="text/javascript">  

xml = new ActiveXObject("Microsoft.XMLDOM") 

xml.load("cdcatalog.xml") 

var xsl = new ActiveXObject("Microsoft.XMLDOM") 

xsl.load("cdcatalog.xsl") 

document.write(xml.transformNode(xsl)) 

</script> </body> </html>  
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XML-FO 

 Extensible Stylesheet Language Formatting 

Objects 

 A W3C language for formatting XML data  

 Now part of the XSL standard, a target language 

for transformed documents 

 Supports a variety of output targets 

 Output is in “pages” 
 Further separated into rectangular areas 
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XQuery  

 A standard for SQL-like queries on XML data 

 Still at the W3C draft stage 

 Relies on XPath and uses its data model 

 Supports simple queries: 

 e.g., doc("books.xml")/bib/book[price<50]  

 Supports complex queries with FLWOR: 
 e.g., for $x in doc("books.xml")/bib/book 

where $x/price>50 order by $x/title return 

$x/title  
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XForms 

 A new infrastructure for web forms 

 Separates form functionality from presentation 

 Single XML form definition model 

 Form data maintained as XML instance data 

 Supports suspend and resume 

 XForms UI replaces XHTML form controls 

 Proprietary UIs provide alternative presentation 

 Extensible for new form elements and widgets 

 



Client Side: 

Scripting Languages 

JavaScript, VBScript, DHTML 
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JavaScript 

 The most common scripting language 
 Originally supported by Netscape, eventually by IE 

 Typically embedded in HTML page 
 Executable computer code within the HTML content 

 Interpreted at runtime on the client side 

 Can be used to dynamically manipulate an HTML 
document 
 Has access to the document’s object model 
 Can react to events 

 Can be used to dynamically place data in the first place 

 Often used to validate form data 

 Weak typing 
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JavaScript Syntax 

 Code written within <script> element 
 e.g., <script type="text/javascript">  
    document.write("Hello World!")  

   </script> 

 Use src attribute for scripts in external files 

 Placement determines execution time 

 Scripts in header must be invoked explicitly 

 e.g., during events 

 Scripts in body executed when that part is being 
processed. 
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JavaScript Syntax 

 User can declare variables 
 e.g., var name = “user”; 
 Variables can be global to the page 

 User can declare functions 
 function func(argument1,argument2,…)  

{ some statements }  

 Function can return values with return 

 Standard conditionals 
 if..then..else, switch, ?: operator 

 Standard loops 
 while, do..while, for 
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JavaScript Syntax 

 JavaScript has built-in “Object” types  
 Variety of operators and built-in functions  

 Arrays, Booleans, Dates, Math, Strings 

 Direct access to the HTML DOM model 

 HTML Elements have script-specific event attributes 
 e.g., <body onmousedown="whichButton()"> 

 e.g., <input type="button" onclick="uncheck()"  

        value="Uncheck Checkbox"> 
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VBScript 

 Microsoft’s answer to JavaScript 
 Never been supported by Netscape 

 Less in use now 

 Use <script type="text/vbscript"> 

 Similar to JavaScript 

 Follows Visual Basic look and feel 

 Possible to declare variables 
 Use “option explicit” to force declaration 

 Separates procedures and functions 
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DHTML 

 DHTML is a marketing buzzword 

 It is not a W3C standard 

 Every browser supports different flavour 

 It is HTML 4 + CSS stylesheets + scripting 
language with access to document model 

 


