
Lexical Analysis and 

Design of Lexical Analyzer  



Lexical Analysis 
• Input is scanned completely to identify the tokens 

• Tokens (Logical unit) 

– Identifier, Keywords, operators etc. 



Specification of Tokens 
– Strings and Languages 

• Finite sequence of Symbols is called Strings 

• Set of strings over some alphabet is called Language 

– Operation on Languages 
• Concatenation: 

– L1L2 = { s1s2 | s1  L1  and  s2  L2 } 

• Union 

– L1 L2 = { s | s  L1  or   s  L2 } 

• Kleene Closure 

– L* =  

• Positive Closure 

– L+ = 

– Regular Expressions 
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Regular Expression 
• Notation for representing Tokens 

• Ex: Identifiers in Pascal 

  letter  A | B | ... | Z | a | b | ... | z 

  digit   0 | 1 | ... | 9 

  id  letter (letter | digit ) * 
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The Reason Why Lexical 

Analysis is a Separate Phase 
• Simplifies the design of the compiler 

– LL(1) or LR(1) parsing with 1 token lookahead would 
not be possible (multiple characters/tokens to match) 

• Provides efficient implementation 

– Systematic techniques to implement lexical analyzers 
by hand or automatically from specifications 

– Stream buffering methods to scan input 

• Improves portability 

– Non-standard symbols and alternate character 
encodings can be normalized (e.g. trigraphs) 
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Interaction of the Lexical 

Analyzer with the Parser 

Lexical 

Analyzer 
Parser 

Source 

Program 

Token, 

tokenval 

Symbol Table 

Get next 

token 

error error 
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Attributes of Tokens 

Lexical analyzer 

<id, “y”> <assign, > <num, 31> <+, > <num, 28> <*, > <id, “x”> 

y := 31 + 28*x 

Parser 

token 

tokenval 

(token attribute) 
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Tokens, Patterns, and Lexemes 

• A token is a classification of lexical units 

– For example: id and num 

• Lexemes are the specific character strings that 

make up a token 

– For example: abc and 123 

• Patterns are rules describing the set of lexemes 

belonging to a token 

– For example: “letter followed by letters and digits” and 

“non-empty sequence of digits” 
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Specification of Patterns for 

Tokens: Definitions 

• An alphabet  is a finite set of symbols 
(characters) 

• A string s is a finite sequence of symbols 
from  

– s denotes the length of string s 

–  denotes the empty string, thus  = 0 

• A language is a specific set of strings over 
some fixed alphabet  
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Specification of Patterns for 

Tokens: String Operations 

• The concatenation of two strings x and y is 

denoted by xy 

• The exponentation of a string s is defined 

by 

 

 s0 =  
 si = si-1s   for i > 0 

 

note that s = s = s 
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Specification of Patterns for 

Tokens: Language Operations 
• Union 

 L  M = {s  s  L or s  M} 

• Concatenation 
 LM = {xy  x  L and y  M} 

• Exponentiation 
 L0 = {};   Li = Li-1L 

• Kleene closure 
 L* = i=0,…, Li 

• Positive closure 
 L+ = i=1,…, Li 
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Specification of Patterns for 

Tokens: Regular Expressions 
• Basis symbols: 

–  is a regular expression denoting language {} 

– a   is a regular expression denoting {a} 

• If r and s are regular expressions denoting 
languages L(r) and M(s) respectively, then 

– rs is a regular expression denoting L(r)  M(s) 

– rs is a regular expression denoting L(r)M(s) 

– r* is a regular expression denoting L(r)* 

– (r) is a regular expression denoting L(r) 

• A language defined by a regular expression is 
called a regular set 
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Specification of Patterns for 

Tokens: Regular Definitions 

• Regular definitions introduce a naming 

convention:  

 d1  r1 

 d2  r2 

 … 

 dn  rn  

where each ri is a regular expression over 

   {d1, d2, …, di-1 } 

• Any dj in ri can be textually substituted in ri to 

obtain an equivalent set of definitions 
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Specification of Patterns for 

Tokens: Regular Definitions 

• Example: 
 
letter  AB…Zab…z 
  digit  01…9 
      id  letter ( letterdigit )* 

 

• Regular definitions are not recursive: 
 
digits  digit digitsdigit wrong! 
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Specification of Patterns for 

Tokens: Notational Shorthand 

• The following shorthands are often used: 

 

      r+ = rr* 

      r? = r 
 [a-z] = abc…z 
 

• Examples: 
digit  [0-9] 

num  digit+ (. digit+)? ( E (+-)? digit+ )? 
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Regular Definitions and 

Grammars 

stmt  if expr then stmt 

          if expr then stmt else stmt 

            

expr  term relop term 

          term 

term  id 

          num 
       if  if 
  then  then 
   else  else 

relop  <  <=  <>  >  >=  = 
      id  letter ( letter | digit )* 

 num  digit+ (. digit+)? ( E (+-)? digit+ )? 

Grammar 

Regular definitions 
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Coding Regular Definitions in 

Transition Diagrams 

0 2 1 

6 

3 

4 

5 

7 

8 

return(relop, LE) 

return(relop, NE) 

return(relop, LT) 

return(relop, EQ) 

return(relop, GE) 

return(relop, GT) 

start < 

= 

> 

= 

> 

= 

other 

other 

* 

* 

9 
start letter 

10 11 * other 

letter or digit 

return(gettoken(), 

             install_id()) 

relop  <<=<>>>== 

id  letter ( letterdigit )* 



18 Coding Regular Definitions in 

Transition Diagrams: Code 
token nexttoken() 
{ while (1) { 
    switch (state) { 
    case 0: c = nextchar(); 
       if (c==blank || c==tab || c==newline) { 
         state = 0; 
         lexeme_beginning++; 
       } 
       else if (c==‘<’) state = 1; 
       else if (c==‘=’) state = 5; 
       else if (c==‘>’) state = 6; 
       else state = fail(); 
       break; 
     case 1: 
       … 
     case 9: c = nextchar(); 
       if (isletter(c)) state = 10; 
       else state = fail(); 
       break; 
     case 10: c = nextchar(); 
       if (isletter(c)) state = 10; 
       else if (isdigit(c)) state = 10; 
       else state = 11; 
       break; 
     … 

int fail() 
{ forward = token_beginning; 
  swith (start) { 
  case  0: start =  9; break; 
  case  9: start = 12; break; 
  case 12: start = 20; break; 
  case 20: start = 25; break; 
  case 25: recover(); break; 
  default: /* error */ 
  } 
  return start; 
} 

Decides the 

next start state 

to check 
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The Lex and Flex Scanner 

Generators 

• Lex and its newer cousin flex are scanner 

generators 

• Systematically translate regular definitions 

into C source code for efficient scanning 

• Generated code is easy to integrate in C 

applications 
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Creating a Lexical Analyzer with 

Lex and Flex 

lex or flex 

compiler 

lex 

source 

program 
lex.l 

lex.yy.c 

input 

stream 

C 

compiler 

a.out 
sequence 

of tokens 

lex.yy.c 

a.out 
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Design of a Lexical Analyzer 

Generator 

• Translate regular expressions to NFA 

• Translate NFA to an efficient DFA 

 regular 

expressions 
NFA DFA 

Simulate NFA 

to recognize 

tokens 

Simulate DFA 

to recognize 

tokens 

Optional 
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Nondeterministic Finite 

Automata 

• An NFA is a 5-tuple (S, , , s0, F) where 

 

S is a finite set of states 

 is a finite set of symbols, the alphabet 

 is a mapping from S   to a set of states 

s0  S is the start state 

F  S is the set of accepting (or final) states 
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Transition Graph 

• An NFA can be diagrammatically 

represented by a labeled directed graph 

called a transition graph 

0 
start a 

1 3 2 
b b 

a 

b 

S = {0,1,2,3} 
 = {a,b} 

s0 = 0 

F = {3} 
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Transition Table 

• The mapping  of an NFA can be 

represented in a transition table 

State 
Input 
a 

Input 
b 

0 {0, 1} {0} 

1 {2} 

2 {3} 

(0,a) = {0,1} 

(0,b) = {0} 

(1,b) = {2} 

(2,b) = {3} 
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The Language Defined by an 

NFA 

• An NFA accepts an input string x if and only if 

there is some path with edges labeled with 

symbols from x in sequence from the start state to 

some accepting state in the transition graph 

• A state transition from one state to another on the 

path is called a move 

• The language defined by an NFA is the set of 
input strings it accepts, such as (ab)*abb for the 

example NFA 
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Design of a Lexical Analyzer 

Generator: RE to NFA to DFA 

s0 

N(p1) 

N(p2) 
start 

 

 
N(pn) 

 
… 

p1 { action1 } 

p2 { action2 } 

… 

pn { actionn } 

action1 

action2 

actionn 

Lex specification with 

regular expressions 

NFA 

DFA 

Subset construction 
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N(r2) N(r1) 

From Regular Expression to NFA 

(Thompson’s Construction) 
f i  

f 
a 

i 

f i 

N(r1) 

N(r2) 

start 

start 

start 
 

  

 

f i 
start 

N(r) f i 
start 

 

 

 

a 

r1r2 

r1r2 

r*   
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Combining the NFAs of a Set of 

Regular Expressions 
2 

a 
1 

start 

6 
a 

3 
start 

4 5 
b b 

8 b 7 
start 

a b 

a { action1 } 
abb { action2 }  
a*b+ { action3 } 

2 
a 

1 

6 
a 

3 4 5 
b b 

8 b 7 

a b 
0 

start 
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Simulating the Combined NFA 

Example 1 
2 

a 
1 

6 
a 

3 4 5 
b b 

8 b 7 

a b 
0 

start 

 

 
 

0 

1 

3 

7 

2 

4 

7 

7 8 

Must find the longest match: 

Continue until no further moves are possible 

When last state is accepting: execute action 

action1 

action2 

action3 

a b a a 
none 
action3 



30 

Simulating the Combined NFA 

Example 2 
2 

a 
1 

6 
a 

3 4 5 
b b 

8 b 7 

a b 
0 

start 

 

 
 

0 

1 

3 

7 

2 

4 

7 

5 

8 

6 

8 

When two or more accepting states are reached, the 

first action given in the Lex specification is executed 

action1 

action2 

action3 

a b b a 
none 
action2 

action3 
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Deterministic Finite Automata 

• A deterministic finite automaton is a special case 

of an NFA 

– No state has an -transition 

– For each state s and input symbol a there is at most one 

edge labeled a leaving s 

• Each entry in the transition table is a single state 

– At most one path exists to accept a string 

– Simulation algorithm is simple 
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Example DFA 

0 
start a 

1 3 2 
b b 

b 
b 

a 

a 

a 

A DFA that accepts (ab)*abb 
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Conversion of an NFA into a 

DFA 

• The subset construction algorithm converts an 

NFA into a DFA using: 

 -closure(s) = {s}  {t  s  …  t} 

 -closure(T) = sT -closure(s) 

 move(T,a) = {t  s a t and s  T} 

• The algorithm produces: 

Dstates is the set of states of the new DFA 

consisting of sets of states of the NFA 

Dtran is the transition table of the new DFA 
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-closure and move Examples 

2 
a 

1 

6 
a 

3 4 5 
b b 

8 b 7 

a b 
0 

start 

 

 
 

-closure({0}) = {0,1,3,7} 
move({0,1,3,7},a) = {2,4,7} 

-closure({2,4,7}) = {2,4,7} 
move({2,4,7},a) = {7} 

-closure({7}) = {7} 
move({7},b) = {8} 

-closure({8}) = {8} 

move({8},a) =  

0 

1 

3 

7 

2 

4 

7 

7 8 

a b a a 
none 

Also used to simulate NFAs 
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Simulating an NFA using 

-closure and move 

S := -closure({s0}) 

Sprev :=   

a := nextchar() 

while S   do 

 Sprev := S 

 S := -closure(move(S,a)) 

 a := nextchar() 

end do 

if Sprev  F   then 

 execute action in Sprev 

 return “yes” 

else return “no” 
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Minimizing the Number of States 

of a DFA 

A 
start 

B 

C 

D E 

b 

b 

b 

b 

b 

a 
a 

a 

a 

a 

A 
start 

B D E 
b b 

a 

a 

b 

a 

a 


