
Lexical Analysis and

Design of Lexical Analyzer

Lexical Analysis
• Input is scanned completely to identify the tokens

• Tokens (Logical unit)

– Identifier, Keywords, operators etc.

Specification of Tokens
– Strings and Languages

• Finite sequence of Symbols is called Strings

• Set of strings over some alphabet is called Language

– Operation on Languages
• Concatenation:

– L1L2 = { s1s2 | s1 L1 and s2 L2 }

• Union

– L1 L2 = { s | s L1 or s L2 }

• Kleene Closure

– L* =

• Positive Closure

– L+ =

– Regular Expressions

1i

i
L

0i

i
L

4

Regular Expression
• Notation for representing Tokens

• Ex: Identifiers in Pascal

 letter A | B | ... | Z | a | b | ... | z

 digit 0 | 1 | ... | 9

 id letter (letter | digit) *

5

The Reason Why Lexical

Analysis is a Separate Phase
• Simplifies the design of the compiler

– LL(1) or LR(1) parsing with 1 token lookahead would
not be possible (multiple characters/tokens to match)

• Provides efficient implementation

– Systematic techniques to implement lexical analyzers
by hand or automatically from specifications

– Stream buffering methods to scan input

• Improves portability

– Non-standard symbols and alternate character
encodings can be normalized (e.g. trigraphs)

6

Interaction of the Lexical

Analyzer with the Parser

Lexical

Analyzer
Parser

Source

Program

Token,

tokenval

Symbol Table

Get next

token

error error

7

Attributes of Tokens

Lexical analyzer

<id, “y”> <assign, > <num, 31> <+, > <num, 28> <*, > <id, “x”>

y := 31 + 28*x

Parser

token

tokenval

(token attribute)

8

Tokens, Patterns, and Lexemes

• A token is a classification of lexical units

– For example: id and num

• Lexemes are the specific character strings that

make up a token

– For example: abc and 123

• Patterns are rules describing the set of lexemes

belonging to a token

– For example: “letter followed by letters and digits” and

“non-empty sequence of digits”

9

Specification of Patterns for

Tokens: Definitions

• An alphabet is a finite set of symbols
(characters)

• A string s is a finite sequence of symbols
from

– s denotes the length of string s

– denotes the empty string, thus = 0

• A language is a specific set of strings over
some fixed alphabet

10

Specification of Patterns for

Tokens: String Operations

• The concatenation of two strings x and y is

denoted by xy

• The exponentation of a string s is defined

by

 s0 =
 si = si-1s for i > 0

note that s = s = s

11

Specification of Patterns for

Tokens: Language Operations
• Union

 L M = {s s L or s M}

• Concatenation
 LM = {xy x L and y M}

• Exponentiation
 L0 = {}; Li = Li-1L

• Kleene closure
 L* = i=0,…, Li

• Positive closure
 L+ = i=1,…, Li

12

Specification of Patterns for

Tokens: Regular Expressions
• Basis symbols:

– is a regular expression denoting language {}

– a is a regular expression denoting {a}

• If r and s are regular expressions denoting
languages L(r) and M(s) respectively, then

– rs is a regular expression denoting L(r) M(s)

– rs is a regular expression denoting L(r)M(s)

– r* is a regular expression denoting L(r)*

– (r) is a regular expression denoting L(r)

• A language defined by a regular expression is
called a regular set

13

Specification of Patterns for

Tokens: Regular Definitions

• Regular definitions introduce a naming

convention:

 d1 r1

 d2 r2

 …

 dn rn

where each ri is a regular expression over

 {d1, d2, …, di-1 }

• Any dj in ri can be textually substituted in ri to

obtain an equivalent set of definitions

14

Specification of Patterns for

Tokens: Regular Definitions

• Example:

letter AB…Zab…z
 digit 01…9
 id letter (letterdigit)*

• Regular definitions are not recursive:

digits digit digitsdigit wrong!

15

Specification of Patterns for

Tokens: Notational Shorthand

• The following shorthands are often used:

 r+ = rr*

 r? = r
 [a-z] = abc…z

• Examples:
digit [0-9]

num digit+ (. digit+)? (E (+-)? digit+)?

16

Regular Definitions and

Grammars

stmt if expr then stmt

 if expr then stmt else stmt

expr term relop term

 term

term id

 num
 if if
 then then
 else else

relop < <= <> > >= =
 id letter (letter | digit)*

 num digit+ (. digit+)? (E (+-)? digit+)?

Grammar

Regular definitions

17

Coding Regular Definitions in

Transition Diagrams

0 2 1

6

3

4

5

7

8

return(relop, LE)

return(relop, NE)

return(relop, LT)

return(relop, EQ)

return(relop, GE)

return(relop, GT)

start <

=

>

=

>

=

other

other

*

*

9
start letter

10 11 * other

letter or digit

return(gettoken(),

 install_id())

relop <<=<>>>==

id letter (letterdigit)*

18 Coding Regular Definitions in

Transition Diagrams: Code
token nexttoken()
{ while (1) {
 switch (state) {
 case 0: c = nextchar();
 if (c==blank || c==tab || c==newline) {
 state = 0;
 lexeme_beginning++;
 }
 else if (c==‘<’) state = 1;
 else if (c==‘=’) state = 5;
 else if (c==‘>’) state = 6;
 else state = fail();
 break;
 case 1:
 …
 case 9: c = nextchar();
 if (isletter(c)) state = 10;
 else state = fail();
 break;
 case 10: c = nextchar();
 if (isletter(c)) state = 10;
 else if (isdigit(c)) state = 10;
 else state = 11;
 break;
 …

int fail()
{ forward = token_beginning;
 swith (start) {
 case 0: start = 9; break;
 case 9: start = 12; break;
 case 12: start = 20; break;
 case 20: start = 25; break;
 case 25: recover(); break;
 default: /* error */
 }
 return start;
}

Decides the

next start state

to check

19

The Lex and Flex Scanner

Generators

• Lex and its newer cousin flex are scanner

generators

• Systematically translate regular definitions

into C source code for efficient scanning

• Generated code is easy to integrate in C

applications

20

Creating a Lexical Analyzer with

Lex and Flex

lex or flex

compiler

lex

source

program
lex.l

lex.yy.c

input

stream

C

compiler

a.out
sequence

of tokens

lex.yy.c

a.out

21

Design of a Lexical Analyzer

Generator

• Translate regular expressions to NFA

• Translate NFA to an efficient DFA

 regular

expressions
NFA DFA

Simulate NFA

to recognize

tokens

Simulate DFA

to recognize

tokens

Optional

22

Nondeterministic Finite

Automata

• An NFA is a 5-tuple (S, , , s0, F) where

S is a finite set of states

 is a finite set of symbols, the alphabet

 is a mapping from S to a set of states

s0 S is the start state

F S is the set of accepting (or final) states

23

Transition Graph

• An NFA can be diagrammatically

represented by a labeled directed graph

called a transition graph

0
start a

1 3 2
b b

a

b

S = {0,1,2,3}
 = {a,b}

s0 = 0

F = {3}

24

Transition Table

• The mapping of an NFA can be

represented in a transition table

State
Input
a

Input
b

0 {0, 1} {0}

1 {2}

2 {3}

(0,a) = {0,1}

(0,b) = {0}

(1,b) = {2}

(2,b) = {3}

25

The Language Defined by an

NFA

• An NFA accepts an input string x if and only if

there is some path with edges labeled with

symbols from x in sequence from the start state to

some accepting state in the transition graph

• A state transition from one state to another on the

path is called a move

• The language defined by an NFA is the set of
input strings it accepts, such as (ab)*abb for the

example NFA

26

Design of a Lexical Analyzer

Generator: RE to NFA to DFA

s0

N(p1)

N(p2)
start

N(pn)

…

p1 { action1 }

p2 { action2 }

…

pn { actionn }

action1

action2

actionn

Lex specification with

regular expressions

NFA

DFA

Subset construction

27

N(r2) N(r1)

From Regular Expression to NFA

(Thompson’s Construction)
f i

f
a

i

f i

N(r1)

N(r2)

start

start

start

f i
start

N(r) f i
start

a

r1r2

r1r2

r*

28

Combining the NFAs of a Set of

Regular Expressions
2

a
1

start

6
a

3
start

4 5
b b

8 b 7
start

a b

a { action1 }
abb { action2 }
a*b+ { action3 }

2
a

1

6
a

3 4 5
b b

8 b 7

a b
0

start

29

Simulating the Combined NFA

Example 1
2

a
1

6
a

3 4 5
b b

8 b 7

a b
0

start

0

1

3

7

2

4

7

7 8

Must find the longest match:

Continue until no further moves are possible

When last state is accepting: execute action

action1

action2

action3

a b a a
none
action3

30

Simulating the Combined NFA

Example 2
2

a
1

6
a

3 4 5
b b

8 b 7

a b
0

start

0

1

3

7

2

4

7

5

8

6

8

When two or more accepting states are reached, the

first action given in the Lex specification is executed

action1

action2

action3

a b b a
none
action2

action3

31

Deterministic Finite Automata

• A deterministic finite automaton is a special case

of an NFA

– No state has an -transition

– For each state s and input symbol a there is at most one

edge labeled a leaving s

• Each entry in the transition table is a single state

– At most one path exists to accept a string

– Simulation algorithm is simple

32

Example DFA

0
start a

1 3 2
b b

b
b

a

a

a

A DFA that accepts (ab)*abb

33

Conversion of an NFA into a

DFA

• The subset construction algorithm converts an

NFA into a DFA using:

 -closure(s) = {s} {t s … t}

 -closure(T) = sT -closure(s)

 move(T,a) = {t s a t and s T}

• The algorithm produces:

Dstates is the set of states of the new DFA

consisting of sets of states of the NFA

Dtran is the transition table of the new DFA

34

-closure and move Examples

2
a

1

6
a

3 4 5
b b

8 b 7

a b
0

start

-closure({0}) = {0,1,3,7}
move({0,1,3,7},a) = {2,4,7}

-closure({2,4,7}) = {2,4,7}
move({2,4,7},a) = {7}

-closure({7}) = {7}
move({7},b) = {8}

-closure({8}) = {8}

move({8},a) =

0

1

3

7

2

4

7

7 8

a b a a
none

Also used to simulate NFAs

35

Simulating an NFA using

-closure and move

S := -closure({s0})

Sprev :=

a := nextchar()

while S do

 Sprev := S

 S := -closure(move(S,a))

 a := nextchar()

end do

if Sprev F then

 execute action in Sprev

 return “yes”

else return “no”

36

Minimizing the Number of States

of a DFA

A
start

B

C

D E

b

b

b

b

b

a
a

a

a

a

A
start

B D E
b b

a

a

b

a

a

