Lexical Analysis and Design of Lexical Analyzer

Lexical Analysis

- Input is scanned completely to identify the tokens
- Tokens (Logical unit)
- Identifier, Keywords, operators etc.

Specification of Tokens

- Strings and Languages
- Finite sequence of Symbols is called Strings
- Set of strings over some alphabet is called Language
- Operation on Languages
- Concatenation:

$$
-\mathrm{L}_{1} \mathrm{~L}_{2}=\left\{\mathrm{s}_{1} \mathrm{~s}_{2} \mid \mathrm{s}_{1} \in \mathrm{~L}_{1} \text { and } \mathrm{s}_{2} \in \mathrm{~L}_{2}\right\}
$$

- Union

$$
-L_{1} \cup L_{2}=\left\{s \mid s \in L_{1} \text { or } s \in L_{2}\right\}
$$

- Kleene Closure

$$
-\mathrm{L}^{*}=\bigcup_{0}^{\infty} L^{i}
$$

- Positive Ctosure

$$
-\mathrm{L}+=\bigcup_{U=1}^{\infty} L^{i}
$$

- Regular Expressions

Regular Expression

- Notation for representing Tokens
- Ex: Identifiers in Pascal

$$
\begin{aligned}
& \text { letter } \rightarrow \mathrm{A}|\mathrm{~B}| \ldots|\mathrm{Z}| \mathrm{a}|\mathrm{~b}| \ldots \mid \mathrm{z} \\
& \operatorname{digit} \rightarrow 0|1| \ldots \mid 9
\end{aligned}
$$

$$
\text { id } \rightarrow \text { letter (letter } \mid \text { digit) * }
$$

The Reason Why Lexical Analysis is a Separate Phase

- Simplifies the design of the compiler
- LL(1) or LR(1) parsing with 1 token lookahead would not be possible (multiple characters/tokens to match)
- Provides efficient implementation
- Systematic techniques to implement lexical analyzers by hand or automatically from specifications
- Stream buffering methods to scan input
- Improves portability
- Non-standard symbols and alternate character encodings can be normalized (e.g. trigraphs)

Interaction of the Lexical Analyzer with the Parser

Attributes of Tokens

$$
y:=31+28 * x \longrightarrow \text { Lexical analyzer }
$$

<id, "y"> <assign, > <num, 31> <+, > <num, 28> <*, > <id, "x"> $\varlimsup_{\substack{\text { token } \\ \text { tokenval }}}$

Tokens, Patterns, and Lexemes

- A token is a classification of lexical units
- For example: id and num
- Lexemes are the specific character strings that make up a token
- For example: abc and 123
- Patterns are rules describing the set of lexemes belonging to a token
- For example: "letter followed by letters and digits" and "non-empty sequence of digits"

Specification of Patterns for Tokens: Definitions

- An alphabet Σ is a finite set of symbols (characters)
- A string s is a finite sequence of symbols from Σ
$-|s|$ denotes the length of string s
$-\varepsilon$ denotes the empty string, thus $|\varepsilon|=0$
- A language is a specific set of strings over some fixed alphabet Σ

Specification of Patterns for Tokens: String Operations

- The concatenation of two strings x and y is denoted by $x y$
- The exponentation of a string s is defined by

$$
\begin{aligned}
& s^{0}=\varepsilon \\
& s^{i}=s^{i-1} S \quad \text { for } i>0
\end{aligned}
$$

note that $s \varepsilon=\varepsilon s=s$

Specification of Patterns for
 Tokens: Language Operations

- Union

$$
L \cup M=\{s \mid s \in L \text { or } s \in M\}
$$

- Concatenation

$$
L M=\{x y \mid x \in L \text { and } y \in M\}
$$

- Exponentiation

$$
L^{0}=\{\varepsilon\} ; \quad L^{i}=L^{i-1} L
$$

- Kleene closure

$$
L^{*}=\cup_{i=0, \ldots, \infty} L^{i}
$$

- Positive closure

$$
L^{+}=\cup_{i=1, \ldots, \infty} L^{i}
$$

Specification of Patterns for Tokens: Regular Expressions

- Basis symbols:
$-\varepsilon$ is a regular expression denoting language $\{\varepsilon\}$
$-a \in \Sigma$ is a regular expression denoting $\{a\}$
- If r and s are regular expressions denoting languages $L(r)$ and $M(s)$ respectively, then
$-r \mid s$ is a regular expression denoting $L(r) \cup M(s)$
$-r s$ is a regular expression denoting $L(r) M(s)$
$-r^{*}$ is a regular expression denoting $L(r)^{*}$
- (r) is a regular expression denoting $L(r)$
- A language defined by a regular expression is called a regular set

Specification of Patterns for Tokens: Regular Definitions

- Regular definitions introduce a naming convention:

$$
\begin{aligned}
& d_{1} \rightarrow r_{1} \\
& d_{2} \rightarrow r_{2} \\
& \ldots \\
& d_{n} \rightarrow r_{n}
\end{aligned}
$$

where each r_{i} is a regular expression over

$$
\Sigma \cup\left\{d_{1}, d_{2}, \ldots, d_{i-1}\right\}
$$

- Any d_{j} in r_{i} can be textually substituted in r_{i} to obtain an equivalent set of definitions

Specification of Patterns for Tokens: Regular Definitions

- Example:
letter $\rightarrow \mathbf{A}|\mathbf{B}| \ldots|\mathbf{z}| \mathbf{a}|\mathbf{b}| \ldots \mid \mathbf{z}$ digit $\rightarrow 0|1| \ldots \mid 9$ id \rightarrow letter (letter \mid digit)*
- Regular definitions are not recursive:
digits \rightarrow digit digits \mid digit wrong!

Specification of Patterns for Tokens: Notational Shorthand

- The following shorthands are often used:

$$
\begin{aligned}
r^{+} & =r r^{*} \\
r ? & =r \mid \varepsilon \\
{[\mathbf{a}-\mathbf{z}] } & =\mathbf{a}|\mathbf{b}| \mathbf{c}|\ldots| \mathbf{z}
\end{aligned}
$$

- Examples: digit \rightarrow [0-9]
num $\rightarrow \operatorname{digit}^{+}\left(\right.$. digit $\left.^{+}\right) ?\left(\mathbf{E}(+\mid-)\right.$? digit $\left.{ }^{+}\right)$?

Regular Definitions and

Grammars

Grammar
$s t m t \rightarrow$ if expr then $s t m t$
if expr then stmt else $s t m t$
ε
expr \rightarrow term relop term
term $\xrightarrow[\mid \text { num }]{\mid \text { id }}$

$$
\begin{aligned}
& \text { Regular definitions } \\
& \text { if } \rightarrow \text { if } \\
& \text { then } \rightarrow \text { then } \\
& \text { else } \rightarrow \text { else } \\
& \text { relop } \rightarrow<|<=|<>|>|>=|= \\
& \text { id } \rightarrow \text { letter }(\text { letter } \mid \text { digit })^{*} \\
& \text { num } \rightarrow \text { digit }^{+}\left(. \text {digit }^{+}\right) ?\left(\mathbf{E}(+\mid-) ? \text { digit }^{+}\right) ?
\end{aligned}
$$

Coding Regular Definitions in Transition Diagrams

relop $\rightarrow<|<=|<>|>|>=|=$

id \rightarrow letter (letter \mid digit) ${ }^{*}$
letter or digit

Coding Regular Definitions in Transition Diagrams: Code

```
token nexttoken()
{ while (1) {
    switch (state) {
    case 0: c = nextchar();
    if (c==blank || c==tab || c==newline) {
        state = 0;
        lexeme_beginning++;
    }
    else if (c=='<') state = 1;
    else if (c=='=') state = 5;
    else if (c=='>') state = 6;
    else state = fail();
    break;
case 1:
case 9: c = nextchar();
    if (isletter(c)) state = 10;
    else state = fail();
    break;
case 10: c = nextchar();
    if (isletter(c)) state = 10;
    else if (isdigit(c)) state = 10;
    else state = 11;
    break;
```

```
int fail()
```

int fail()
{ forward = token_beginning;
{ forward = token_beginning;
swith (start) {
swith (start) {
case 0: start = 9; break;
case 0: start = 9; break;
case 9: start = 12; break;
case 9: start = 12; break;
case 12: start = 20; break;
case 12: start = 20; break;
case 20: start = 25; break;
case 20: start = 25; break;
case 25: recover(); break;
case 25: recover(); break;
default: /* error */
default: /* error */
}
}
return start;
return start;
}

```
}
```


The Lex and Flex Scanner Generators

- Lex and its newer cousin flex are scanner generators
- Systematically translate regular definitions into C source code for efficient scanning
- Generated code is easy to integrate in C applications

Creating a Lexical Analyzer with Lex and Flex

Design of a Lexical Analyzer Generator

- Translate regular expressions to NFA
- Translate NFA to an efficient DFA

Nondeterministic Finite Automata

- An NFA is a 5 -tuple $\left(S, \Sigma, \delta, s_{0}, F\right)$ where
S is a finite set of states
Σ is a finite set of symbols, the alphabet
δ is a mapping from $S \times \Sigma$ to a set of states
$s_{0} \in S$ is the start state
$F \subseteq S$ is the set of accepting (or final) states

Transition Graph

- An NFA can be diagrammatically represented by a labeled directed graph called a transition graph

Transition Table

- The mapping δ of an NFA can be represented in a transition table

$$
\begin{aligned}
& \delta(0, a)=\{0,1\} \\
& \delta(0, b)=\{0\} \\
& \delta(1, b)=\{2\} \\
& \delta(2, b)=\{3\}
\end{aligned} .
$$

State	Input \mathbf{a}	Input \mathbf{b}
0	$\{0,1\}$	$\{0\}$
1		$\{2\}$
2		$\{3\}$

The Language Defined by an NFA

- An NFA accepts an input string x if and only if there is some path with edges labeled with symbols from x in sequence from the start state to some accepting state in the transition graph
- A state transition from one state to another on the path is called a move
- The language defined by an NFA is the set of input strings it accepts, such as (a|b)*abb for the example NFA

Design of a Lexical Analyzer Generator: RE to NFA to DFA

Lex specification with regular expressions

DFA

From Regular Expression to NFA (Thompson's Construction)
 $$
\varepsilon
$$
 $$
\xrightarrow{\text { start }}(i \text { ـ }
$$

a

$r_{1} \mid r_{2}$

$r_{1} r_{2}$
$\xrightarrow{\text { start }}(i) N\left(r_{1}\right) \bigcirc N\left(r_{2}\right)($ ($)$

Combining the NFAs of a Set of Regular Expressions $\xrightarrow{\text { start }}(1) \xrightarrow{\text { a }}$ (2)

a $\quad\left\{\right.$ action $\left._{1}\right\}$
abb $\left\{\right.$ action $\left._{2}\right\}$
a*b+ \{action $\left.{ }_{3}\right\}$

Simulating the Combined NFA

Example 1

Continue until no further moves are possible When last state is accepting: execute action

Simulating the Combined NFA

Example 2

When two or more accepting states are reached, the first action given in the Lex specification is executed

Deterministic Finite Automata

- A deterministic finite automaton is a special case of an NFA
- No state has an ε-transition
- For each state s and input symbol a there is at most one edge labeled a leaving s
- Each entry in the transition table is a single state
- At most one path exists to accept a string
- Simulation algorithm is simple

Example DFA

A DFA that accepts (a|b)*abb

Conversion of an NFA into a DFA

- The subset construction algorithm converts an NFA into a DFA using:

$$
\begin{aligned}
& \varepsilon-\operatorname{closure}(s)=\{s\} \cup\left\{t \mid s \rightarrow_{\varepsilon} \ldots \rightarrow_{\varepsilon} t\right\} \\
& \varepsilon-\operatorname{closure}(T)=\cup_{s \in T} \varepsilon-\operatorname{closure}(s) \\
& \operatorname{move}(T, a)=\left\{t \mid s \rightarrow_{a} t \text { and } s \in T\right\}
\end{aligned}
$$

- The algorithm produces:

Dstates is the set of states of the new DFA consisting of sets of states of the NFA
Dtran is the transition table of the new DFA

ε-closure and move Examples

$$
\begin{aligned}
& \varepsilon \text {-closure }(\{0\})=\{0,1,3,7\} \\
& \text { move }(\{0,1,3,7\}, \mathbf{a})=\{2,4,7\} \\
& \varepsilon \text {-closure }(\{2,4,7\})=\{2,4,7\} \\
& \operatorname{move}(\{2,4,7\}, \mathbf{a})=\{7\} \\
& \varepsilon \text {-closure }(\{7\})=\{7\} \\
& \operatorname{move}(\{7\}, \mathbf{b})=\{8\} \\
& \varepsilon \text {-closure }(\{8\})=\{8\} \\
& \operatorname{move}(\{8\}, \mathbf{a})=\varnothing
\end{aligned}
$$

Simulating an NFA using ε-closure and move

$$
\begin{aligned}
& S:=\varepsilon \text {-closure }\left(\left\{s_{0}\right\}\right) \\
& S_{\text {prev }}:=\varnothing \\
& a:=\text { nextchar }() \\
& \text { while } S \neq \varnothing \text { do } \\
& \quad S_{\text {prev }}:=S \\
& \quad S:=\varepsilon-\operatorname{closure}(\operatorname{move}(S, a)) \\
& \quad a:=\operatorname{nextchar}()
\end{aligned}
$$

end do
if $S_{\text {prev }} \cap F \neq \varnothing$ then
execute action in $S_{\text {prev }}$
return "yes"
else return "no"

Minimizing the Number of States of a DFA

