Cloud Computing

Narender Solanki

What is Cloud Computing?

- Cloud Computing is a general term used to describe a new class of network based computing that takes place over the Internet,
 - basically a step on from Utility Computing
 - a collection/group of integrated and networked hardware,
 software and Internet infrastructure (called a platform).
 - Using the Internet for communication and transport provides hardware, software and networking services to clients
- These platforms hide the complexity and details of the underlying infrastructure from users and applications by providing very simple graphical interface or API (Applications Programming Interface).

What is Cloud Computing?

- In addition, the platform provides on demand services, that are always on, anywhere, anytime and any place.
- Pay for use and as needed, elastic
 - scale up and down in capacity and functionalities
- The hardware and software services are available to
 - general public, enterprises, corporations and businesses markets

Cloud Summary

 Cloud computing is an umbrella term used to refer to Internet based development and services

- A number of characteristics define cloud data, applications services and infrastructure:
 - Remotely hosted: Services or data are hosted on remote infrastructure.
 - Ubiquitous: Services or data are available from anywhere.
 - Commodified: The result is a utility computing model similar to traditional that of traditional utilities, like gas and electricity - you pay for what you would want!

Cloud Architecture

M

What is Cloud Computing

- Shared pool of configurable computing resources
- On-demand network access
- Provisioned by the Service Provider

Cloud Computing Characteristics

Common Characteristics:

Massive Scale Resilient Computing

Homogeneity Geographic Distribution

Virtualization

Service Orientation

Low Cost Software

Advanced Security

Essential Characteristics:

On Demand Self-Service

Broad Network Access

Rapid Elasticity

Resource Pooling

Measured Service

Cloud Service Models

Software as a Service (SaaS)

Platform as a Service (PaaS)

Infrastructure as a Service (laaS)

SalesForce CRM

LotusLive

Software as a Service (SaaS) Providers Applications

Platform as a Service (PaaS)

Deploy customer created Applications

Infrastructure as a Service (laaS)

Rent Processing, storage, N/W capacity & computing resources

Different Cloud Computing Layers

Application Service (SaaS)	MS Live/ExchangeLabs, IBM, Google Apps; Salesforce.com Quicken Online, Zoho, Cisco
Application Platform	Google App Engine, Mosso, Force.com, Engine Yard, Facebook, Heroku, AWS
Server Platform	3Tera, EC2, SliceHost, GoGrid, RightScale, Linode
Storage Platform	Amazon 53, Dell, Apple,

Basic Cloud Characteristics

- The "no-need-to-know" in terms of the underlying details of infrastructure, applications interface with the infrastructure via the APIs.
- The "flexibility and elasticity" allows these systems to scale up and down at will
 - utilising the resources of all kinds
 - CPU, storage, server capacity, load balancing, and databases
- The "pay as much as used and needed" type of utility computing and the "always on!, anywhere and any place" type of network-based computing.

Basic Cloud Characteristics

- Cloud are transparent to users and applications, they can be built in multiple ways
 - branded products, proprietary open source, hardware or software, or just off-the-shelf PCs.
- In general, they are built on clusters of PC servers and off-the-shelf components plus Open Source software combined with inhouse applications and/or system software.

M

Cloud-Sourcing

- Why is it becoming a Big Deal:
 - Using high-scale/low-cost providers,
 - Any time/place access via web browser,
 - Rapid scalability; incremental cost and load sharing,
 - Can forget need to focus on local IT.

Concerns:

- Performance, reliability, and SLAs,
- Control of data, and service parameters,
- Application features and choices,
- Interaction between Cloud providers,
- No standard API mix of SOAP and REST!
- Privacy, security, compliance, trust...

Some Commercial Cloud Offerings

Amazon Elastic Compute Cloud (Amazon EC2) - Beta

Cloud Taxonomy

Infrastructure Services

Storage

Amazon S3 Amazon EBS CTERA Portal Mosso Cloud Files Nirvanix

Compute

Amazon EC2 Serve Path GoGrid Elastra Mosso Cloud Servers

Jovent Accelerators **AppNexus**

Flexiscale Elastichosts Hosting.com CloudNine

Terramark GridLayer

- ITRICITY LayeredTech

Services Management

RightScale enStratus Scalr

CohesiveFT Kaavo

CloudStatus Ylastic Dynect

CloudFoundry NewRelic

Cloud42

CLOUD TAXONOMY

Cloud Software

Compute

Data

10Gen MongoDB

Oracle Coherence

Gemstone Gemfire

Apache CouchDb

Apache HBase

Tokyo Cabinet

Hypertable

TerraCotta

Cassandra

memcached

Appliances

PingIdentity -

Symplified -

rPath -

Vordel -

Globus Toolkit -Xeround Beowulf Sun Grid Engine -Hadoop OpenCloud Gigaspaces DataSynapse -

File Storage

EMC Atmos -ParaScale -Zmamda -CTERA -

Xeround

Cloud Management

3Tera App Logic -OpenNebula Open.ControlTier **Enomaly Enomalism** Altor Networks VMware vSphere **OnPathTech** CohesiveFT VPN Cubed

Hyperic Eucalyptus

Reductive Lbs Puppet OpenQRM Appistry

Platform Services

General Purpose

- Force.com Etelos LongJump **AppJet** Rollbase Bungee Labs Connect

Google App Engine **Engine Yard** Caspio Qrimp MS Azure Services Platform Mosso Cloud Sites

Business

Intelligence - Aster DB Quantivo Cloud9 Analytics Blink Logic **K2** Analytics LogiXML Oco Panorama

PivotLink Sterna ColdLight Neuron Infobright

Vertica

Integration

- Amazon SOS MuleSource Mule **OnDemand** Boomi SnapLogic **OpSource Connect** Cast Iron Microsoft BizTalk Services

SnapLogic SaaS Solution Packs Appian Anywhere HubSpan Informatica

Development & Testina

Keynote Systems Mercury SOASTA - SkyTap Aptana LoadStorm Collabnet L Dynamsoft

Database

Google BigTable - Amazon SimpleDB FathomDB Microsoft SDS

Software Services

Financials

Content

Billing Aria Systems eVapt **OpSource** Redi2 Zuora

Concur -Xero -Workday -Beam4d_

Legal DirectLaw -Advologix -Fios Sertifi

Backup &

Backup

Xactly LucidEra -StreetSmarts Success Metrics

Demand

Sales Productivity Zoho -IBM Lotus Live Google Apps -Desktoptwo -Parallels -ClusterSeven -

Desktop

Human Resources

Collaboration

Box.net -

DropBox -

Management Taleo Clickability -Workday SpringCM iCIMS_ CrownPoint -

Recovery JungleDisk -Mozy Zmanda Cloud

OpenRSM -Social Syncplicity -Networks

Ning -Zembly. Amitive -

CRM Document NetSuite -Management

Parature -NetDocuments Responsys Questys Rightnow DocLanding Salesforce.com Aconex LiveOps . **Xythos MSDynamics** Knowledge TreeLive Oracle On

SpringCM -

Cloud Storage

- Several large Web companies are now exploiting the fact that they have data storage capacity that can be hired out to others.
 - allows data stored remotely to be temporarily cached on desktop computers, mobile phones or other Internetlinked devices.

- Amazon's Elastic Compute Cloud (EC2) and Simple Storage Solution (S3) are well known examples
 - Mechanical Turk

Opportunities and Challenges

- The use of the cloud provides a number of opportunities:
 - It enables services to be used without any understanding of their infrastructure.
 - Cloud computing works using economies of scale:
 - It potentially lowers the outlay expense for start up companies, as they would no longer need to buy their own software or servers.
 - Cost would be by on-demand pricing.
 - Vendors and Service providers claim costs by establishing an ongoing revenue stream.
 - Data and services are stored remotely but accessible from "anywhere".

M

Opportunities and Challenges

- In parallel there has been backlash against cloud computing:
 - Use of cloud computing means dependence on others and that could possibly limit flexibility and innovation:
 - The others are likely become the bigger Internet companies like Google and IBM, who may monopolise the market.
 - Some argue that this use of supercomputers is a return to the time of mainframe computing that the PC was a reaction against.
 - Security could prove to be a big issue:
 - It is still unclear how safe out-sourced data is and when using these services ownership of data is not always clear.
 - There are also issues relating to policy and access:
 - If your data is stored abroad whose policy do you adhere to?
 - What happens if the remote server goes down?
 - How will you then access files?
 - There have been cases of users being locked out of accounts and losing access to data.