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Translation  

Cartesian coordinates provide a one-to-one 

relationship between number and shape, such that 
when we change a shape’s coordinates, we change 

its geometry.  

For example, if P(x, y) is a vertex on a shape, when 

we apply the operation x’=x+3 we create a new 

point P(x’, y) three units to the right.  

Similarly, the operation y’=y+1 creates a new point 

P(x, y’) displaced one unit vertically.  

By applying both of these transforms to every 

vertex to the original shape, the shape is displaced 

as shown in Figure. 
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Translation  

The translated shape results by adding 3 to every x-

coordinate, and 1 to every y-coordinate of the 

original shape.  
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Translation  

The algebraic and matrix notation for 2D translation 

is 

x’ = x + tx 

y’ = y + ty  

or, using matrices,  

  

 

  

 

x’ 1 0 tx x 

y’ = 0 1 ty y 

1 0 0 1 1 
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Scaling 

Shape scaling is achieved by multiplying coordinates 

as follows: 
x’ = 2x   and    y’ = 1.5y  

This transform results in a horizontal scaling of 2 
and a vertical scaling of 1.5 

Note that a point 

located at the 

origin does not 

change its place, 
so scaling is 

relative to the 
origin.  
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Scaling 

The algebraic and matrix notation for 2D scaling is 

x’ = sx x 

y’ = sy y  
or, using matrices, 

x’ sx  0 0 x 

y’ = 0 sy  0 y 

1 0 0 1 1 

The scaling action is relative to the origin, i.e. the 

point (0,0) remains (0,0).  All other points move 
away from the origin.  



7 

Scaling 

To scale relative to another point (px,py) we first 

subtract (px,py) from (x,y) respectively. This 
effectively translates the reference point (px,py) 

back to the origin. Second, we perform the scaling 

operation, and third, add (px,py) back to (x,y) 

respectively, to compensate for the original 

subtraction. Algebraically this is 

x’ = sx (x – px) + px 

y’ = sy (y – py) + py  

which simplifies to 

x’ = sx x + px(1 – sx) 

y’ = sy y + py(1 – sy)  
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Scaling 

in a homogeneous matrix form  

x’ sx  0 px(1– sx)  x 

y’ = 0 sy  py(1 – sy)  y 

1 0 0 1 1 

For example, to scale a shape by 2 relative to the 

point (1, 1) the matrix is 

x’ 2 0 – 1 x 

y’ = 0 2  – 1 y 

1 0 0 1 1 
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Scaling 

The strategy used to scale a point (x, y) relative to some 

arbitrary point (px, py) was to first, translate (–px, –py); 
second, perform the scaling; and third, translate (px, py).  

x’ 1 0 px  sx 0 0 1 0 -px x 

y’ = 0 1  py  0 sy 0 0 1 -py y 

1 0 0 1 0 0 1 0 0 1 1 

x’ 

[translate(px, py)] [scale(sx, sy)] [translate(–px,–py)]  

x 

y’ = y 

1 1 
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Reflection  

To make a reflection of a shape relative to the      

y-axis, we simply reverse the sign of the      
x-coordinate, leaving the y-coordinate unchanged 

x’ = – x  

y’ = y  
And to reflect a shape relative to the x-axis we 

reverse the y-coordinates: 

x’ = x 

y’ = – y  



11 

Reflection  

Examples of reflections are shown in Figure. The top 

right-hand shape can give rise to the three 
reflections simply by reversing the signs of 

coordinates  
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Reflection  

The matrix notation for reflecting about the y-axis 

is: 

about the x-axis is: 

x’ – 1 0 0 x 

y’ = 0 1  0 y 

1 0 0 1 1 

x’ 1 0 0 x 

y’ = 0 – 1  0 y 

1 0 0 1 1 
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Reflection  

To make a reflection about an arbitrary vertical or horizontal 

axis we need to introduce some more algebraic deception. 
For example, to make a reflection about the vertical axis 
x=1 

 First subtract 1 from the x -coordinate. This effectively 
makes the x=1 axis coincident with the major y-axis.  

 Next we perform the reflection by reversing the sign of the 
modified x -coordinate.  

 Finally, we add 1 to the reflected coordinate to compensate 
for the original subtraction. Algebraically, the three steps are 

 
x1 = x – 1       x2 = – (x – 1)      x’ = – (x – 1) + 1 

 

which simplifies to   x’ = –x + 2        y’ = y  
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Reflection  

In matrix form: x’ – 1 0 2 x 

y’ = 0 1  0 y 

1 0 0 1 1 

This figure illustrates 
this process.  

The shape on the 
right is reflected 
about the x = 1 axis  
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Reflection  

In general, to reflect a shape about an arbitrary      

y-axis, x = ax, the following transform is required: 

x’ = – (x –ax) + ax = –x + 2ax 

y’ = y  
or, in matrix form,  

x’ – 1 0 2ax x 

y’ = 0 1  0 y 

1 0 0 1 1 
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Reflection  

Similarly, this transform is used for reflections about 

an arbitrary x-axis, y = ay: 

x’ = x 

y’ = – (y – ay) + ay = –y + 2ay  

or, in matrix form, 

x’ 1 0 0 x 

y’ = 0 – 1  2ay y 

1 0 0 1 1 
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Reflection 

Therefore, using matrices, we can reason that a reflection 

transform about an arbitrary axis x = ax, parallel with the y-
axis, is given by 

x’ 1 0 ax  -1 0 0 1 0 -ax x 

y’ = 0 1  0  0 1 0 0 1 0 y 

1 0 0 1 0 0 1 0 0 1 1 

x’ 

[translate(ax, 0)] [reflection] [translate(–ax,0)]  

x 

y’ = y 

1 1 
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Shearing  

A shape is sheared by leaning it over at an angle β. Figure 

below illustrates the geometry, and we see that the y-
coordinate remains unchanged but the x -coordinate is a 
function of y and tan(β). 

x’ = x + y tan(β) 

y’ = y  

x’ 1 tan(β) 0 x 

y’ = 0 0 0 y 

1 0 0 1 1 

The original square shape is sheared to the right by an angle 
β, and the horizontal shift is proportional to y tan(β).  
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Rotation  

In the Figure the point P(x, y) is to be rotated by an angle β 

about the origin to P(x’, y’). It can be seen that: 

 x’ = R cos(θ + β) 

 y’ = R sin(θ + β)  

x’ = R(cos(θ) cos(β) – sin(θ) sin(β)) 
    = R(  (x/R) cos(β) – (y/R) sin(β)) = x cos(β) – y sin(β) 
y’ = R(sin(θ) cos(β) + cos(θ) sin(β)) 
    = R( (y/R) cos(β) + (x/R) sin(β)) = x sin(β) + y cos(β)  
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Rotation  
x’ = x cos(β) – y sin(β) 

y’ = x sin(β) + y cos(β)  

x’ cos(β)  –sin(β)  0 x 

y’ = sin(β)  cos(β)  0 y 

1 0 0 1 1 

For example, to rotate a point by 900 the matrix becomes: 

x’ 0 – 1 0 x 

y’ = 1 0  0 y 

1 0 0 1 1 

Thus the point (1, 0) becomes (0, 1).  
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Rotation  

To rotate a point (x, y) about an arbitrary point (px, py)  

1. Subtract (px, py) from the coordinates (x, y) respectively 
This enables us to perform the rotation about the origin.  

x1 = (x – px) 

y1 = (y – py) 

2. Rotate β about the origin: 

x2 = (x –px) cos(β) – (y –py) sin(β) 

y2 = (x –px) sin(β) + (y –py) cos(β) 

3. Add (px, py) to compensate for the original subtraction 

x’ = (x – px) cos(β) – (y – py) sin(β) + px 

y’ = (x – px) sin(β) + (y – py) cos(β) + py 
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Rotation  

x’ = x cos(β) –y sin(β) + px(1 –cos(β)) + py sin(β) 

y’ = x sin(β) + y cos(β) + py(1 –cos(β)) –px sin(β) 

in matrix form: 

x’ cos(β)  –sin(β)  px(1–cos(β))+py sin(β)  x 

y’ = sin(β)  cos(β)  py(1–cos(β))–px sin(β)  y 

1 0 0 1 1 

x’ 0 – 1 0 x 

y’ = 1 0  0 y 

1 0 0 1 1 

rotating a point 90º about the point (1, 1) the matrix becomes  
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Rotation  

x’ = x cos(β) –y sin(β) + px(1 –cos(β)) + py sin(β) 

y’ = x sin(β) + y cos(β) + py(1 –cos(β)) –px sin(β) 

in matrix form: 

x’ cos(β)  –sin(β)  px(1–cos(β))+py sin(β)  x 

y’ = sin(β)  cos(β)  py(1–cos(β))–px sin(β)  y 

1 0 0 1 1 

x’ 0 – 1 0 x 

y’ = 1 0  0 y 

1 0 0 1 1 

rotating a point 90º about the point (1, 1) the matrix becomes  
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Rotation 

Therefore, using matrices, we can develop a rotation about 

an arbitrary point (px, py) as follows: 

x’ 1 0 px  cos(β)  –sin(β)  0 1 0 -px x 

y’ = 0 1 py  sin(β)  cos(β)  0 0 1 -py y 

1 0 0 1 0 0 1 0 0 1 1 

x’ 

[translate(px, py)] [rotate β] [translate(–px, –py)]  

x 

y’ = y 

1 1 


