
1

Computer graphics

Two Dimensional Geometric

Transformations

2

Translation

Cartesian coordinates provide a one-to-one

relationship between number and shape, such that
when we change a shape’s coordinates, we change

its geometry.

For example, if P(x, y) is a vertex on a shape, when

we apply the operation x’=x+3 we create a new

point P(x’, y) three units to the right.

Similarly, the operation y’=y+1 creates a new point

P(x, y’) displaced one unit vertically.

By applying both of these transforms to every

vertex to the original shape, the shape is displaced

as shown in Figure.

3

Translation

The translated shape results by adding 3 to every x-

coordinate, and 1 to every y-coordinate of the

original shape.

4

Translation

The algebraic and matrix notation for 2D translation

is

x’ = x + tx

y’ = y + ty

or, using matrices,

x’ 1 0 tx x

y’ = 0 1 ty y

1 0 0 1 1

5

Scaling

Shape scaling is achieved by multiplying coordinates

as follows:
x’ = 2x and y’ = 1.5y

This transform results in a horizontal scaling of 2
and a vertical scaling of 1.5

Note that a point

located at the

origin does not

change its place,
so scaling is

relative to the
origin.

6

Scaling

The algebraic and matrix notation for 2D scaling is

x’ = sx x

y’ = sy y
or, using matrices,

x’ sx 0 0 x

y’ = 0 sy 0 y

1 0 0 1 1

The scaling action is relative to the origin, i.e. the

point (0,0) remains (0,0). All other points move
away from the origin.

7

Scaling

To scale relative to another point (px,py) we first

subtract (px,py) from (x,y) respectively. This
effectively translates the reference point (px,py)

back to the origin. Second, we perform the scaling

operation, and third, add (px,py) back to (x,y)

respectively, to compensate for the original

subtraction. Algebraically this is

x’ = sx (x – px) + px

y’ = sy (y – py) + py

which simplifies to

x’ = sx x + px(1 – sx)

y’ = sy y + py(1 – sy)

8

Scaling

in a homogeneous matrix form

x’ sx 0 px(1– sx) x

y’ = 0 sy py(1 – sy) y

1 0 0 1 1

For example, to scale a shape by 2 relative to the

point (1, 1) the matrix is

x’ 2 0 – 1 x

y’ = 0 2 – 1 y

1 0 0 1 1

9

Scaling

The strategy used to scale a point (x, y) relative to some

arbitrary point (px, py) was to first, translate (–px, –py);
second, perform the scaling; and third, translate (px, py).

x’ 1 0 px sx 0 0 1 0 -px x

y’ = 0 1 py 0 sy 0 0 1 -py y

1 0 0 1 0 0 1 0 0 1 1

x’

[translate(px, py)] [scale(sx, sy)] [translate(–px,–py)]

x

y’ = y

1 1

10

Reflection

To make a reflection of a shape relative to the

y-axis, we simply reverse the sign of the
x-coordinate, leaving the y-coordinate unchanged

x’ = – x

y’ = y
And to reflect a shape relative to the x-axis we

reverse the y-coordinates:

x’ = x

y’ = – y

11

Reflection

Examples of reflections are shown in Figure. The top

right-hand shape can give rise to the three
reflections simply by reversing the signs of

coordinates

12

Reflection

The matrix notation for reflecting about the y-axis

is:

about the x-axis is:

x’ – 1 0 0 x

y’ = 0 1 0 y

1 0 0 1 1

x’ 1 0 0 x

y’ = 0 – 1 0 y

1 0 0 1 1

13

Reflection

To make a reflection about an arbitrary vertical or horizontal

axis we need to introduce some more algebraic deception.
For example, to make a reflection about the vertical axis
x=1

 First subtract 1 from the x -coordinate. This effectively
makes the x=1 axis coincident with the major y-axis.

 Next we perform the reflection by reversing the sign of the
modified x -coordinate.

 Finally, we add 1 to the reflected coordinate to compensate
for the original subtraction. Algebraically, the three steps are

x1 = x – 1 x2 = – (x – 1) x’ = – (x – 1) + 1

which simplifies to x’ = –x + 2 y’ = y

14

Reflection

In matrix form: x’ – 1 0 2 x

y’ = 0 1 0 y

1 0 0 1 1

This figure illustrates
this process.

The shape on the
right is reflected
about the x = 1 axis

15

Reflection

In general, to reflect a shape about an arbitrary

y-axis, x = ax, the following transform is required:

x’ = – (x –ax) + ax = –x + 2ax

y’ = y
or, in matrix form,

x’ – 1 0 2ax x

y’ = 0 1 0 y

1 0 0 1 1

16

Reflection

Similarly, this transform is used for reflections about

an arbitrary x-axis, y = ay:

x’ = x

y’ = – (y – ay) + ay = –y + 2ay

or, in matrix form,

x’ 1 0 0 x

y’ = 0 – 1 2ay y

1 0 0 1 1

17

Reflection

Therefore, using matrices, we can reason that a reflection

transform about an arbitrary axis x = ax, parallel with the y-
axis, is given by

x’ 1 0 ax -1 0 0 1 0 -ax x

y’ = 0 1 0 0 1 0 0 1 0 y

1 0 0 1 0 0 1 0 0 1 1

x’

[translate(ax, 0)] [reflection] [translate(–ax,0)]

x

y’ = y

1 1

18

Shearing

A shape is sheared by leaning it over at an angle β. Figure

below illustrates the geometry, and we see that the y-
coordinate remains unchanged but the x -coordinate is a
function of y and tan(β).

x’ = x + y tan(β)

y’ = y

x’ 1 tan(β) 0 x

y’ = 0 0 0 y

1 0 0 1 1

The original square shape is sheared to the right by an angle
β, and the horizontal shift is proportional to y tan(β).

19

Rotation

In the Figure the point P(x, y) is to be rotated by an angle β

about the origin to P(x’, y’). It can be seen that:

 x’ = R cos(θ + β)

 y’ = R sin(θ + β)

x’ = R(cos(θ) cos(β) – sin(θ) sin(β))
 = R((x/R) cos(β) – (y/R) sin(β)) = x cos(β) – y sin(β)
y’ = R(sin(θ) cos(β) + cos(θ) sin(β))
 = R((y/R) cos(β) + (x/R) sin(β)) = x sin(β) + y cos(β)

20

Rotation
x’ = x cos(β) – y sin(β)

y’ = x sin(β) + y cos(β)

x’ cos(β) –sin(β) 0 x

y’ = sin(β) cos(β) 0 y

1 0 0 1 1

For example, to rotate a point by 900 the matrix becomes:

x’ 0 – 1 0 x

y’ = 1 0 0 y

1 0 0 1 1

Thus the point (1, 0) becomes (0, 1).

21

Rotation

To rotate a point (x, y) about an arbitrary point (px, py)

1. Subtract (px, py) from the coordinates (x, y) respectively
This enables us to perform the rotation about the origin.

x1 = (x – px)

y1 = (y – py)

2. Rotate β about the origin:

x2 = (x –px) cos(β) – (y –py) sin(β)

y2 = (x –px) sin(β) + (y –py) cos(β)

3. Add (px, py) to compensate for the original subtraction

x’ = (x – px) cos(β) – (y – py) sin(β) + px

y’ = (x – px) sin(β) + (y – py) cos(β) + py

22

Rotation

x’ = x cos(β) –y sin(β) + px(1 –cos(β)) + py sin(β)

y’ = x sin(β) + y cos(β) + py(1 –cos(β)) –px sin(β)

in matrix form:

x’ cos(β) –sin(β) px(1–cos(β))+py sin(β) x

y’ = sin(β) cos(β) py(1–cos(β))–px sin(β) y

1 0 0 1 1

x’ 0 – 1 0 x

y’ = 1 0 0 y

1 0 0 1 1

rotating a point 90º about the point (1, 1) the matrix becomes

23

Rotation

x’ = x cos(β) –y sin(β) + px(1 –cos(β)) + py sin(β)

y’ = x sin(β) + y cos(β) + py(1 –cos(β)) –px sin(β)

in matrix form:

x’ cos(β) –sin(β) px(1–cos(β))+py sin(β) x

y’ = sin(β) cos(β) py(1–cos(β))–px sin(β) y

1 0 0 1 1

x’ 0 – 1 0 x

y’ = 1 0 0 y

1 0 0 1 1

rotating a point 90º about the point (1, 1) the matrix becomes

24

Rotation

Therefore, using matrices, we can develop a rotation about

an arbitrary point (px, py) as follows:

x’ 1 0 px cos(β) –sin(β) 0 1 0 -px x

y’ = 0 1 py sin(β) cos(β) 0 0 1 -py y

1 0 0 1 0 0 1 0 0 1 1

x’

[translate(px, py)] [rotate β] [translate(–px, –py)]

x

y’ = y

1 1

