ZigBee Architecture

By Monika A.P (CSE)

Content

- Introduction
 - History
 - ZigBee Alliance
 - > Characteristics
 - Security
 - Applications
- ZigBee/IEEE 802.15.4
 - > IEEE 802.15.4 Physical Layer
 - > IEEE 802.15.4 MAC Layer
- ZigBee Network Topologies
- ZigBee and Bluetooth Comparison

Introduction

 ZigBee is a technological standard designed for control and sensor networks

Based on the IEEE 802.15.4 Standard

Created by the ZigBee Alliance

Introduction

Operates in Personal Area Networks
 (PAN's) and device-to-device networks

 Connectivity between small packet devices

 Control of lights, switches, thermostats, appliances, etc.

History

 Developement started 1998, when many enginereers realized that WiFi and Bluetooth were going to be unsuitable for many applications

IEEE 802.15.4 standard was completed in May 2003

ZigBee Alliance

- Organization defining global standards for reliable, cost-effective, low power wireless applications
- A consortium of end users and solution providers, primarily responsible for the development of the 802.15.4 standard
- Developing applications and network capability utilizing the 802.15.4 packet delivery mechanism

Characteristics

- Low cost
- Low power consumption
- Low data rate
- Relatively short transmission range
- Scalability
- Reliability
- Flexible protocol design suitable for many applications

Security

- Encryption specified for MAC, Network and APS layers
- Encryprion/Authentication mode CCM(CTR +CBC-MAC)
 - CTR is a counter based encryption mode
 - CBC-MAC provides data integrity
- All security is based on 128bit key and AES-128 block encryption method

Applications

monitors sensors automation control

TV VCR DVD/CD Remote control

monitors diagnosti cs sensors

PERSUNAL HEALIH CARE

> consoles portables education al

ZigBee LOW DATA-RATE RADIO DEVICES

TOYS & GAMES

mouse keyboar d joystick PC & PERIPHERALS

security HVAC lighting closures

ZigBee/IEEE 802.15.4

ZigBee Alliance
-"the software"
-Network, Security & Application
layers
-Brand management
IEEE 802.15.4
-"the hardware"
-Physical & Media Access Control

IEEE 802.15.4

IEEE 802.15.4 Architecture

ZigBee Application Framework

Networking App Layer

Data Link Controller (DLC)

IEEE 802.2 LLC

Other LLC

IEEE 802.15.4 MAC

IEEE 802.15.4 868/915 MHz PHY IEEE 802.15.4 2400 MHz PHY

TEEE 802.15.4 Physical Layer

- PHY functionalities:
 - Activation and deactivation of the radio transceiver
 - Energy detection within the current channel
 - Link quality indication for received packets
 - Clear channel assessment for CSMA-CA
 - Channel frequency selection
 - Data transmission and reception

PHY frame structure

- PHY packet fields
 - Preamble (32 bits) synchronization
 - Start of packet delimiter (8 bits) shall be formatted as "11100101"
 - > PHY header (8 bits) –PSDU length
 - > PSDU (0 to 127 bytes) data field

TEEE 802.15.4 MAC Layer

- Traffic Type
 - Periodic data
 - e.g. sensors
 - Intermittent data
 - e.g. light switch
 - Repetitive low latency data
 - e.g. mouse

IEEE 802.15.4 MAC Layer

Device Classes

- Full function device (FFD)
 - Can function in any topology
 - Capable of being Network coordinator
 - Can talk to any other device (FFD/RFD)
- Reduced function device (RFD)
 - Limited to star topology
 - Cannot become network coordinator
 - Talks only to FFDs

Address

- All devices must have 64 bit IEEE addresses
- Short (16 bit) addresses can be allocated to reduce packet size

TEEE 802.15.4 MAC Layer

- Frame Types
 - Data Frame
 - used for all transfers of data
 - Beacon Frame
 - used by a coordinator to transmit beacons
 - Acknowledgment Frame
 - used for confirming successful frame reception
 - MAC Command Frame
 - used for handling all MAC peer entity control transfers

TEEE 802.15.4 MAC Layer

- Transmission Mode
 - Slotted (Beacon enable mode)
 - Periodic data and Repetitive low latency data using.
 - Un-slotted (Non-Beacon enable mode)
 - Intermittent data using.

- Star Topology
 - Advantage
 - Easy to synchronize
 - Low latency
 - Disadvantage
 - Small scale

- Mesh Topology
 - Advantage
 - Robust multihop communication
 - Network is more flexible
 - Lower latency
 - Disadvantage
 - Route discovery is costly
 - Needs storage for routing table

- Cluster Tree
 - Advantage
 - Low routing cost
 - Allow multihop communication
 - Disadvantage
 - Route reconstruction is costly
 - Latency may be quite long

ZigBee and Bluetooth Comparison

- Optimized for different applications
 - ZigBee
 - Smaller packets over large network
 - Mostly Static networks with many, infrequently used devices
 - Home automation, toys, remote controls, etc.
 - Bluetooth
 - Larger packets oversmall network
 - Ad-hoc networks
 - File transfer
 - Screen graphics, pictures, handsfree audio, Mobile phones, headsets, PDAs, etc.

ZigBee and Bluetooth Comparison

Feature(s)	Bluetooth	ZigBee
Power Profile	days	years
Complexity	complex	Simple
Nodes/Master	7	64000
Latency	10 seconds	30 ms - 1s
Range	10m	70m ~ 300m
Extendibility	no	Yes
Data Rate	1 Mbps	250 Kbps
Security	64bit, 128bit	128bit AES and Application Layer